function [range,A12,A21]=dist(lat,long,argu1,argu2);
% DIST    Computes distance and bearing between points on the earth
%         using various reference spheroids.
%
%         [RANGE,AF,AR]=DIST(LAT,LONG) computes the ranges RANGE between
%         points specified in the LAT and LONG vectors (decimal degrees with
%         positive indicating north/east). Forward and reverse bearings 
%         (degrees) are returned in AF, AR.
%
%         [RANGE,GLAT,GLONG]=DIST(LAT,LONG,N) computes N-point geodesics
%         between successive points. Each successive geodesic occupies
%         it's own row (N>=2)
%
%         [..]=DIST(...,'ellipsoid') uses the specified ellipsoid
%         to get distances and bearing. Available ellipsoids are:
%
%         'clarke66'  Clarke 1866
%         'iau73'     IAU 1973
%         'wgs84'     WGS 1984
%         'sphere'    Sphere of radius 6371.0 km
%
%          The default is 'wgs84'.
%
%          Ellipsoid formulas are recommended for distance d<2000 km,
%          but can be used for longer distances.

%Notes: RP (WHOI) 3/Dec/91
%         Mostly copied from BDC "dist.f" routine (copied from ....?), but
%         then wildly modified to bring it in line with Matlab vectorization.
%
%       RP (WHOI) 6/Dec/91
%         Feeping Creaturism! - added geodesic computations. This turned
%         out to be pretty hairy since there were a lot of branch problems
%         with asin, atan when computing geodesics subtending > 90 degrees
%         that were ignored in the original code!
%       RP (WHOI) 15/Jan/91
%         Fixed some bothersome special cases, like when computing geodesics
%         and N=2, or LAT=0...
%	A Newhall (WHOI) Sep 1997
%	   modified and fixed a bug found in Matlab version 5
%
%		NOTE: This routine may interfere with dist that
%			is supplied with matlab's neural net toolbox.

%C GIVEN THE LATITUDES AND LONGITUDES (IN DEG.) IT ASSUMES THE IAU SPHERO
%C DEFINED IN THE NOTES ON PAGE 523 OF THE EXPLANATORY SUPPLEMENT TO THE
%C AMERICAN EPHEMERIS.
%C
%C THIS PROGRAM COMPUTES THE DISTANCE ALONG THE NORMAL
%C SECTION (IN M.) OF A SPECIFIED REFERENCE SPHEROID GIVEN
%C THE GEODETIC LATITUDES AND LONGITUDES OF THE END POINTS
%C  *** IN DECIMAL DEGREES ***
%C
%C  IT USES ROBBIN'S FORMULA, AS GIVEN BY BOMFORD, GEODESY,
%C FOURTH EDITION, P. 122.  CORRECT TO ONE PART IN 10**8
%C AT 1600 KM.  ERRORS OF 20 M AT 5000 KM.
%C
%C   CHECK:  SMITHSONIAN METEOROLOGICAL TABLES, PP. 483 AND 484,
%C GIVES LENGTHS OF ONE DEGREE OF LATITUDE AND LONGITUDE
%C AS A FUNCTION OF LATITUDE. (SO DOES THE EPHEMERIS ABOVE)
%C
%C PETER WORCESTER, AS TOLD TO BRUCE CORNUELLE...1983 MAY 27
%C

spheroid='wgs84'; 
geodes=0;
if (nargin >= 3),
   if (isstr(argu1)),
      spheroid=argu1;
   else
      geodes=1;
      Ngeodes=argu1;
      if (Ngeodes <2), error('Must have at least 2 points in a goedesic!');end;
      if (nargin==4), spheroid=argu2; end;
   end;
end;

if (spheroid(1:3)=='sph'),
      A = 6371000.0;
      B = A;
      E = sqrt(A*A-B*B)/A;
      EPS= E*E/(1-E*E);
elseif (spheroid(1:3)=='cla'), 
      A = 6378206.4E0;
      B = 6356583.8E0;
      E= sqrt(A*A-B*B)/A;
      EPS = E*E/(1.-E*E);
elseif(spheroid(1:3)=='iau'),
      A = 6378160.e0;
      B = 6356774.516E0;
      E = sqrt(A*A-B*B)/A; 
      EPS = E*E/(1.-E*E);
elseif(spheroid(1:3)=='wgs'),

%c on 9/11/88, Peter Worcester gave me the constants for the 
%c WGS84 spheroid, and he gave A (semi-major axis), F = (A-B)/A
%c (flattening) (where B is the semi-minor axis), and E is the
%c eccentricity, E = ( (A**2 - B**2)**.5 )/ A
%c the numbers from peter are: A=6378137.; 1/F = 298.257223563
%c E = 0.081819191
      A = 6378137.;
      E = 0.081819191;
      B = sqrt(A.^2 - (A*E).^2);
      EPS= E*E/(1.-E*E);

else
   error('dist: Unknown spheroid specified!');
end;


NN=max(size(lat));
if (NN ~= max(size(long))), 
   error('dist: Lat, Long vectors of different sizes!');
end

if (NN==size(lat)), rowvec=0;  % It is easier if things are column vectors,
else                rowvec=1; end; % but we have to fix things before returning!

lat=lat(:)*pi/180;     % convert to radians
long=long(:)*pi/180;

lat(lat==0)=eps*ones(sum(lat==0),1);  % Fixes some nasty 0/0 cases in the
                                      % geodesics stuff

PHI1=lat(1:NN-1);    % endpoints of each segment
XLAM1=long(1:NN-1);
PHI2=lat(2:NN);
XLAM2=long(2:NN);

                    % wiggle lines of constant lat to prevent numerical probs.
if (any(PHI1==PHI2)), 
   for ii=1:NN-1,
      if (PHI1(ii)==PHI2(ii)), PHI2(ii)=PHI2(ii)+ 1e-14; end;
   end;
end;
                     % wiggle lines of constant long to prevent numerical probs.
if (any(XLAM1==XLAM2)), 
   for ii=1:NN-1,
      if (XLAM1(ii)==XLAM2(ii)), XLAM2(ii)=XLAM2(ii)+ 1e-14; end;
   end;
end;



%C  COMPUTE THE RADIUS OF CURVATURE IN THE PRIME VERTICAL FOR
%C EACH POINT

xnu=A./sqrt(1.0-(E*sin(lat)).^2);
xnu1=xnu(1:NN-1);
xnu2=xnu(2:NN);

%C*** COMPUTE THE AZIMUTHS.  A12 (A21) IS THE AZIMUTH AT POINT 1 (2)
%C OF THE NORMAL SECTION CONTAINING THE POINT 2 (1)

TPSI2=(1.-E*E)*tan(PHI2) + E*E*xnu1.*sin(PHI1)./(xnu2.*cos(PHI2));
PSI2=atan(TPSI2);

%C*** SOME FORM OF ANGLE DIFFERENCE COMPUTED HERE??

DPHI2=PHI2-PSI2;
DLAM=XLAM2-XLAM1;
CTA12=(cos(PHI1).*TPSI2 - sin(PHI1).*cos(DLAM))./sin(DLAM);
A12=atan((1.)./CTA12);
CTA21P=(sin(PSI2).*cos(DLAM) - cos(PSI2).*tan(PHI1))./sin(DLAM);
A21P=atan((1.)./CTA21P);

%C    GET THE QUADRANT RIGHT
DLAM2=(abs(DLAM)<pi).*DLAM + (DLAM>=pi).*(-2*pi+DLAM) + ...
        (DLAM<=-pi).*(2*pi+DLAM);
A12=A12+(A12<-pi)*2*pi-(A12>=pi)*2*pi;
A12=A12+pi*sign(-A12).*( sign(A12) ~= sign(DLAM2) );
A21P=A21P+(A21P<-pi)*2*pi-(A21P>=pi)*2*pi;
A21P=A21P+pi*sign(-A21P).*( sign(A21P) ~= sign(-DLAM2) );
%%A12*180/pi
%%A21P*180/pi


SSIG=sin(DLAM).*cos(PSI2)./sin(A12);
% At this point we are OK if the angle < 90...but otherwise
% we get the wrong branch of asin! 
% This fudge will correct every case on a sphere, and *almost*
% every case on an ellipsoid (wrong hnadling will be when
% angle is almost exactly 90 degrees)
dd2=[cos(long).*cos(lat) sin(long).*cos(lat) sin(lat)];
dd2=sum((diff(dd2).*diff(dd2))')';
if ( any(abs(dd2-2) < 2*((B-A)/A))^2 ),
   disp('dist: Warning...point(s) too close to 90 degrees apart');
end;
bigbrnch=dd2>2;
 
SIG=asin(SSIG).*(bigbrnch==0) + (pi-asin(SSIG)).*bigbrnch;
     
SSIGC=-sin(DLAM).*cos(PHI1)./sin(A21P);
SIGC=asin(SSIGC);
A21 = A21P - DPHI2.*sin(A21P).*tan(SIG/2.0);

%C   COMPUTE RANGE

G2=EPS*(sin(PHI1)).^2;
G=sqrt(G2);
H2=EPS*(cos(PHI1).*cos(A12)).^2;
H=sqrt(H2);
TERM1=-SIG.*SIG.*H2.*(1.0-H2)/6.0;
TERM2=(SIG.^3).*G.*H.*(1.0-2.0*H2)/8.0;
TERM3=(SIG.^4).*(H2.*(4.0-7.0*H2)-3.0*G2.*(1.0-7.0*H2))/120.0;
TERM4=-(SIG.^5).*G.*H/48.0;

range=xnu1.*SIG.*(1.0+TERM1+TERM2+TERM3+TERM4);


if (geodes),

%c now calculate the locations along the ray path. (for extra accuracy, could
%c do it from start to halfway, then from end for the rest, switching from A12
%c to A21...
%c started to use Rudoe's formula, page 117 in Bomford...(1980, fourth edition)
%c but then went to Clarke's best formula (pg 118)

%RP I am doing this twice because this formula doesn't work when we go
%past 90 degrees! 
    Ngd1=round(Ngeodes/2);

% First time...away from point 1
    if (Ngd1>1),
      wns=ones(1,Ngd1);
      CP1CA12 = (cos(PHI1).*cos(A12)).^2;
      R2PRM = -EPS.*CP1CA12;
      R3PRM = 3.0*EPS.*(1.0-R2PRM).*cos(PHI1).*sin(PHI1).*cos(A12);
      C1 = R2PRM.*(1.0+R2PRM)/6.0*wns;
      C2 = R3PRM.*(1.0+3.0*R2PRM)/24.0*wns;
      R2PRM=R2PRM*wns;
      R3PRM=R3PRM*wns;

%c  now have to loop over positions
      RLRAT = (range./xnu1)*([0:Ngd1-1]/(Ngeodes-1));

      THETA = RLRAT.*(1 - (RLRAT.^2).*(C1 - C2.*RLRAT));
      C3 = 1.0 - (R2PRM.*(THETA.^2))/2.0 - (R3PRM.*(THETA.^3))/6.0;
      DSINPSI =(sin(PHI1)*wns).*cos(THETA) + ...
               ((cos(PHI1).*cos(A12))*wns).*sin(THETA);
%try to identify the branch...got to other branch if range> 1/4 circle
       PSI = asin(DSINPSI);

      DCOSPSI = cos(PSI);
      DSINDLA = (sin(A12)*wns).*sin(THETA)./DCOSPSI;
      DTANPHI=(1.0+EPS)*(1.0 - (E^2)*C3.*(sin(PHI1)*wns)./DSINPSI).*tan(PSI);
%C compute output latitude (phi) and long (xla) in radians
%c I believe these are absolute, and don't need source coords added
      PHI = atan(DTANPHI);
%  fix branch cut stuff - 
      otherbrcnh= sign(DLAM2*wns) ~= sign([sign(DLAM2) diff(DSINDLA')'] );
      XLA = XLAM1*wns + asin(DSINDLA).*(otherbrcnh==0) + ...
                       (pi-asin(DSINDLA)).*(otherbrcnh);
    else
      PHI=PHI1;
      XLA=XLAM1;
    end;
      
% Now we do the same thing, but in the reverse direction from the receiver!
    if (Ngeodes-Ngd1>1),
      wns=ones(1,Ngeodes-Ngd1);
      CP2CA21 = (cos(PHI2).*cos(A21)).^2;
      R2PRM = -EPS.*CP2CA21;
      R3PRM = 3.0*EPS.*(1.0-R2PRM).*cos(PHI2).*sin(PHI2).*cos(A21);
      C1 = R2PRM.*(1.0+R2PRM)/6.0*wns;
      C2 = R3PRM.*(1.0+3.0*R2PRM)/24.0*wns;
      R2PRM=R2PRM*wns;
      R3PRM=R3PRM*wns;

%c  now have to loop over positions
      RLRAT = (range./xnu2)*([0:Ngeodes-Ngd1-1]/(Ngeodes-1));

      THETA = RLRAT.*(1 - (RLRAT.^2).*(C1 - C2.*RLRAT));
      C3 = 1.0 - (R2PRM.*(THETA.^2))/2.0 - (R3PRM.*(THETA.^3))/6.0;
      DSINPSI =(sin(PHI2)*wns).*cos(THETA) + ...
               ((cos(PHI2).*cos(A21))*wns).*sin(THETA);
%try to identify the branch...got to other branch if range> 1/4 circle
      PSI = asin(DSINPSI);

      DCOSPSI = cos(PSI);
      DSINDLA = (sin(A21)*wns).*sin(THETA)./DCOSPSI;
      DTANPHI=(1.0+EPS)*(1.0 - (E^2)*C3.*(sin(PHI2)*wns)./DSINPSI).*tan(PSI);
%C compute output latitude (phi) and long (xla) in radians
%c I believe these are absolute, and don't need source coords added
      PHI = [PHI fliplr(atan(DTANPHI))];
% fix branch cut stuff
      otherbrcnh= sign(-DLAM2*wns) ~= sign( [sign(-DLAM2) diff(DSINDLA')'] );
      XLA = [XLA fliplr(XLAM2*wns + asin(DSINDLA).*(otherbrcnh==0) + ...
                       (pi-asin(DSINDLA)).*(otherbrcnh))];
    else
      PHI = [PHI PHI2];
      XLA = [XLA XLAM2];
    end;

%c convert to degrees
      A12 = PHI*180/pi;
      A21 = XLA*180/pi;
      range=range*([0:Ngeodes-1]/(Ngeodes-1));


else

%C*** CONVERT TO DECIMAL DEGREES
   A12=A12*180/pi;
   A21=A21*180/pi;
   if (rowvec),
      range=range';
      A12=A12';
      A21=A21';
   end;
end;