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1 Introduction: The calendar problem

Earth’s orbital parameter are changing in time [BER]. Over periods of 100,000
and 400,000 years, eccentricity slowly varies from (nearly) 0 to 0,0607, inducing
small changes of the annual mean total insolation received by the Earth. Oblig-
uity oscillates from 22° to 25° over a 41,000—year period and the position of the
equinoxes precesses relative to the perihelion with 19,000— and 23, 000—year peri-
ods [JOUBRAC].

On an orbital timescale, these differences become relevant so that applying today’s
’fixed-day’ calendar to past annual cycles can lead to significant biases.
Our aim is to define a reasonable calendar for the past which takes into account the
orbital variations.

In case daily simulation data is saved, averages on a new calendar can and should
be computed directly. Otherwise, we present a calendar conversion method which
only needs the original (i.e. present-day-calendar) monthly means and approximates

corrected monthly means.

2 Theoretical Background

2.1 Defining an angular calendar

In order to define seasons which resonate with the respective orbital configuration,
it seems appropriate to compare seasonal climate with respect to earth’s position
along its orbit.

We consider earth’s true anomaly ¥: The true anomaly is defined as the angle
between the perihelion on the major axis of the orbit ellipsoid and the current

position of earth as shown in figure 1 and 2.

Earth
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Figure 1: The true anomaly.

We then define a month (season) as a 30° (90°) increment of the true longitude, seen



from a fixed starting point. Usually, the Northern Hemisphere (NH) vernal equinox
(VE) is set as the beginning of spring at March 21%.

This way, we defined starting and endpoints of each month (season) via an angle. In
order to obtain a calendar, we do now have to calculate month (season) lengths by
calculating how much time earth needs to move from the respective starting to the
endpoint of a month (season). In the following, we derive a connection between the
true anomaly of any given time and the time elapsed since earth passed perihelion.
We first have a look at the mean anomaly M, i.e. the angle between the perihelion
and earth’s position based on the assumption that the orbit would be a perfect circle

(figure 2). The mean anomaly is defined by

2.7
T
where T is the orbital period (1 year, or 365 days) and tp is the time elapsed since

M= 1, (2.1)

earth passed the perihelion. In order to obtain the true anomaly 9, taking into

account the eccentricity e, we define the eccentric anomaly F via

E—¢-sin(E)=M. (2.2)

This equation can be solved using Newton’s method. Finally, we gain the true

anomaly:

Y = 2 - arctan ( Lte -tan(g)> . (2.3)

Figure 2: The mean, eccentric and true anomaly [KEP].



2.2 A calendar conversion method

If daily simulation data is available, new means can (and should) be calculated
using the daily output. If not, new means have to be calculated using only the
monthly means that are based on a modern calendar. For this purpose, we first
have to reconstruct the daily time series in a way that original monthly (seasonal)
mean averages are preserved. In the following, we present the mean preserving

reconstruction algorithm.

2.2.1 The mean preserving reconstruction algorithm

The mean preserving algorithm is presented in [MP]. The basic method is nothing
more than the usual running mean method with a box size (window size) of 3 days.
This method leads to a smooth but not necessarily mean preserving annual cycle. In
order to preserve the original means, a correction term is introduced later in section
2.2.2.

Let m be the given data set size and n the desired data set size. For our purpose of
reconstructing an annual cycle out of monthly (seasonal) averages, usual m € {4,12}
and n € {365,366}. Let AVG[m] be the input vector of monthly (seasonal) means
and Vivgw([n] the output vector of size m,n respectively. We initialise Vorp(i),

i€ {l,...,n} so that each daily value equals the respective monthly mean:

Vorp(i) = AVG(im) ,

where i, € {1,...,m} is the month (season) in which day i is included.
Then, for each i € {1,...,n}, we calculate
1
V(i) = 3 (Vin(t = 1) + Voo (1) + Vi (i + 1)) . (2.4)

—

If we consider periodic data (like insolation), there are periodic boundary conditions:

. (VOLD<365) + VOLD(l) + VOLD<2)) (25)

W —

Vew (1) =

and

Vi (365) = %  (Vorn(364) + Vorp(365) + Vorn(1)) . (2.6)

If not, the endpoint values are averaged using only one neighbour:

- (Vorp(1) + Vorn(2)), (2.7)

1
Vvew (1) = 3

1

Vivew (365) = 5 - (Vorp(364) + Vorn(365)) (2.8)



The vector Vprp is updated:

VOLD = VNEW . (29)

After at most n iterations the algorithm converges to a stable solution [MP].

2.2.2 Mean correction term

In every step i € {1,...,n} we define a mean correction term C(m;) for each month

(season) m; € {1,...,m} by

> iem; VnEWw (1)

||

C(m;) == AVG(m;) — : (2.10)

so that C(m;) equals the desired monthly (seasonal) average minus the current
average. Adding the mean correction term to every Viypgw (i) makes the monthly
average being exactly AVG(m;):

We update all Vygw (i),i € {1,...,n} by

In figure 3 we present the result of the mean preserving algorithm after 365 iterations.
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Figure 3: Reconstruction of an annual cycle of arbitrary monthly mean values (sim-
ilar to [MP, p. 228]).



The mean preserving algorithm does not have to be executed for each grid point (for
the usual Gaussian grid this would lead to 4608 executions per year) but only one
time per year. For each year Y, we define a conversion matrix 7y which converts
data from the classical calendar into Y’s angular calendar. Each column i of 7y is
obtained by applying the conversion to an annual cycle which equals 1 in month i
and 0 in all other months. For details, see theorem 5.1 in the Appendix. Once we
defined the conversion matrix, the conversion of any annual cycle AVG[m] can be

executed by multiplying by 7:

For example, the matrix 7926 (rounded on two decimals) for converting monthly data

from the classical calendar to a 126 ka calendar is given by:

0.91 —0.08 0.02 0 0 0 0 0 0 0.01 —-0.04 0.19
0.1 095 -0.03 0.01 0 0 0 0 0 0 0 -0.02

0 0.02 099 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0.01 1.02 -0.04 0.01 0 0 0 0 0

0 0 0 -0.02 0.08 1.01 -0.09 0.02 0 0 0 0

0 0 0 0.01 —-0.04 0.2 094 -0.12 0.03 0 0 0

0 0 0 0 0 0.02 -0.09 045 0.73 —-0.13 0.03 0

0 0 0 0 0 0 0.02 —-0.09 047 0.71 -0.12 0.02
0.02 0 0 0 0 0 0 0.02 —-0.09 042 0.75 -0.11
—-0.1 0.02 0 0 0 0 0 0 0.01 -0.06 0.31 0.83

Considering again the arbitrary annual cycle from figure 3, the original monthly

mean vector

v = (0.5 0.55 0.65 1.2 1.25 0.35 0.5 0.8 1 1.1 1.3 1)

is converted to V126 = T126 * U:

V126 = (0.573 0.545 0.6545 1.2 1.278 0.4005 0.436 0.731 0.948 1.053 1.263 1.138) .



3 Implementation

3.1 General Information

The calendar conversion consists of two main parts:

1. Defining the angular calendar.
2. Computing new monthly means on the calendar.

a) Compute unbiased monthly means directly using daily model output.
p

(b) Converting old monthly means into new monthly means (if no daily model

output is available).

The function calendar calculates the angular calendar for given orbital parameters,
the script newmonthlymeans_daily.py computes new monthly means using daily
data while newmonthlymeans_conv.py converts the monthly means using the
mean preserving algorithm from section 2.2.

Before describing the functions more detailed, we give an overview over some vari-

ables which appear everywhere in the code.

caltod vector containing month (season) lengths for today’s classical calendar
calpast vector containing angular month (season) lengths for the past
timtod /timpast  vector containing starting days of the months (seasons) for today/past
w.r.t to caltod/calpast
bias vector containing the offset of calpast w.r.t caltod
VE angle between perihelion and NH vernal equinox (in degree)
(true anomaly as defined in section 2.1)

€ earth’s eccentricity

Sometimes, it is helpful to use the calendars (caltod/calpast), while sometimes you
need the starting days or the calendar offset (timtod/timpast/bias). The often-used
help function calcal returns for any given caltod and calpast the vectors timtod,

timpast and bias.



3.2 The angular calendar

Function calendar
Input parameter ¢, VE, desired timesteps (seasons or months)

Output the angular calendar in integer and exact length (calpast)

For all calculations, where days are converted to angles or vice versa, we use equa-
tions (2.1), (2.2) and (2.3). Those calculations are executed using the subfunctions
day and ang. For any given true longitude, day computes the time that elapsed
since the perihelion, while ang computes the true longitude for any given time.

In our implementation, year length is approximated as 365 days and VE is fixed at
March, 215 at noon. For calculating a monthly angular calendar, the starting day
has to be shifted to the nearest start of a month, which is April 15t

Since we cannot define April 1% as the day starting 10.5 days later than the VE
(we would again apply today’s calendar to a different orbital configuration, which
is exactly what we want to avoid defining the angular calendar) it seems reasonable
to also define April 1% via an angle. Therefore, we compute the angle between
nowaday’s VE and April 1% and use this as a definition for April 15" which can be
used for any orbital configuration.

The months (seasons) are then defined as 30° (90°) segments of earth’s orbit. The
resultant lenghts are rounded using the largest remainder method: Each month
(season) first gets the respective ’integer-part’ number of days, the remaining days

are distributed by the size of the month’s (season’s) decimal parts.

3.3 Processing daily simulation data

In case daily simulation data is saved, new monthly means can be computed directly.

Script newmonthlymeans_daily.py
executed by newmean_bash_daily.sh
Input files 12 files containing daily data for each month,

Further input parameter variable and year

Output files new means on the angular calendar

First, adapt the script to your needs:

1. Set the directory which contains the Input files as your working directory by

redefining ’outdir’.



2. Change the input file names by redefining ’daily’.

Start the script via ./newmean_bash_daily.sh year variable (name) variable (num-

ber), for example:

./newmean_bash_daily.sh 0900 tsurf 169

The output file is safed as daily_year_variable(name).nc .

3.4 The conversion

Script newmonthlymeans_conv.py
executed by newmean_bash_conv.sh
Input files 12 files containing monthly data

Further input parameter variable and year

Output files new means using mean preserving algorithm

First, adapt the script to your needs:

1. Set the directory which contains the Input files as your working directory by

redefining "outdir’.

2. Change the input file names by redefining 'month’.

Start the script via . /newmean_bash_conv.sh year variable (name) variable (number),
for example:
./newmean_bash_conv.sh 0900 tsurf 169

The output file is safed as daily_conv_variable(name).nc.

4 Results

4.1 The angular calendar

Without commenting too much we give the angular calendars and the respective or-
bital configuration for our test years 126 ka, 6 ka and present day (PD) as computed

via function ’calendar’ from section 3.2.



1. Orbital parameters

PD 126 ka 6 ka

eccentricity 0.016724 0.039726 0.018670
VE 282.157° 112.133° 181.750°

2. Month’s lengths

PD 126 ka 6 ka

January 29 33 31
February 30 32 31
March 30 31 31
April 31 30 32
May 31 29 31
June 31 28 31
July 31 28 30
August 31 29 30
September 31 29 29
October 30 31 29
November 30 32 30
December 30 33 30

3. Season’s lengths

PD 126 ka 6 ka

Spring 93 89 93
Summer 93 85 89
Autumn 90 94 89

Winter 89 97 94

A short remark: Obviously, today’s season lengths are in phase with the orbital

definition of seasons, while today’s calendar is not an angular calendar.
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4.2 The conversion

In this section we want to measure the performance of our conversion method. As
a measurement of how good the conversion approximates the new averages we use

RMSE, or 2-norm. For x = (z1,...,x,) the norm ||z||s is defined by

|z = (Zw2> . (4.13)

For each grid cell we have three vectors of monthly means. Let v. be the vector of
averages on the classical calendar, v, the vector of averages on the angular calendar
and v,,, the result after our conversion method, using the mean preserving algorithm.

Hence, a measurement for the exactness of the conversion method is given by

Ny = [|vm — vall2 (4.14)

which we compare to

N, = ||ve — vals.- (4.15)

Above’s definitions (4.14) and (4.15) are only locally, per grid cell. We gain a global
estimation by averaging over all norm deviations per grid cell. In figure 4, 5 and 6,
the such averaged norm deviation per year is shown for 100 years in 126 ka.

The following diagrams illustrate the method’s exactness for the top incoming solar
(short-wave) radiation (sradOd, figure 4), the surface temperature (tsurf, figure 5)
and the surface air pressure (aps, figure 6).

We see significant differences in the performance: The conversion method performs
really well for srad0d and is a clear improvement for tsurf. For a variable like aps
which is more influenced by internal variability and less directly influenced by solar
radiation, the method is not recommendable and we strongly suggest to keep daily

data if angular calendar means are needed.
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Figure 4: Comparison of original means to conversion results: srad0d
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Figure 5: Comparison of original means to conversion results: tsurf
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Figure 6: Comparison of original means to conversion results: aps

Finally, we have a look at the norm deviation at different regions: In figure 7 and
8 the norm deviations NV,,, and N, as defined in equations (4.14) and (4.15) for an
arbitrary year in 126 ka are shown. The differences between classical and angular
means occur to be greater at high and mid latitudes, where the seasonal variations
are bigger. After our conversion method, the results are clearly better but the effect

of strong seasonal variations at high and low latitudes still exists.
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Figure 7: Comparison of original means to daily output means for variable tsurf.
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Figure 8: Comparison of conversion results to daily output means for variable tsurf.
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5 Appendix

Theorem 5.1. The calendar conversion based on the mean preserving algorithm can
be executed using only one climate-data-independent conversion matrix of dimension

n X m per year.

Sketch of proof. Let’s assume we want to convert monthly mean values, so n =
12. Both parts of the conversion (the reconstruction of the original cycle and the
calculation of new monthly means on a new calendar) are linear in the monthly
mean values: The annual cycle is reconstructed iteratively using equation 2.4 which
is clearly linear. New means can then be calculated directly, using the reconstructed
daily output, so this part is linear, too.

Then, let 7 : R'2 — R!? be the transformation, mapping the monthly mean vector
from an old calendar to the monthly mean vector on the new calendar. Since 7 is

linear, we know for v € R!?

12 12 T(e)1 - T(eih VU1

7(v) = T(Zvi'ez‘) = ZT(Uz"ei) = 7le) v =

7'(61)12 te 7’(612)12 V12

So, we gain the conversion matrix (7(e;);) by applying the conversion

method one time to each unit vector (ey, ..., e12).

O
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