
Internship project at Alfred-Wegener-Institut

Calendar Conversion

A method to produce robust monthly and seasonal averages on orbital

time scales

Carolin Krug, 13.07.2018

Contents

1 Introduction: The calendar problem 2

2 Theoretical Background 2

2.1 Defining an angular calendar . 2

2.2 A calendar conversion method . 4

2.2.1 The mean preserving reconstruction algorithm 4

2.2.2 Mean correction term . 5

3 Implementation 7

3.1 General Information . 7

3.2 The angular calendar . 8

3.3 Processing daily simulation data . 8

3.4 The conversion . 9

4 Results 9

4.1 The angular calendar . 9

4.2 The conversion . 11

5 Appendix 15

References 16

1

1 Introduction: The calendar problem

Earth’s orbital parameter are changing in time [BER]. Over periods of 100, 000

and 400, 000 years, eccentricity slowly varies from (nearly) 0 to 0, 0607, inducing

small changes of the annual mean total insolation received by the Earth. Obliq-

uity oscillates from 22◦ to 25◦ over a 41, 000−year period and the position of the

equinoxes precesses relative to the perihelion with 19, 000− and 23, 000−year peri-

ods [JOUBRAC].

On an orbital timescale, these differences become relevant so that applying today’s

’fixed-day’ calendar to past annual cycles can lead to significant biases.

Our aim is to define a reasonable calendar for the past which takes into account the

orbital variations.

In case daily simulation data is saved, averages on a new calendar can and should

be computed directly. Otherwise, we present a calendar conversion method which

only needs the original (i.e. present-day-calendar) monthly means and approximates

corrected monthly means.

2 Theoretical Background

2.1 Defining an angular calendar

In order to define seasons which resonate with the respective orbital configuration,

it seems appropriate to compare seasonal climate with respect to earth’s position

along its orbit.

We consider earth’s true anomaly ϑ: The true anomaly is defined as the angle

between the perihelion on the major axis of the orbit ellipsoid and the current

position of earth as shown in figure 1 and 2.

Figure 1: The true anomaly.

We then define a month (season) as a 30◦ (90◦) increment of the true longitude, seen

2

from a fixed starting point. Usually, the Northern Hemisphere (NH) vernal equinox

(VE) is set as the beginning of spring at March 21st.

This way, we defined starting and endpoints of each month (season) via an angle. In

order to obtain a calendar, we do now have to calculate month (season) lengths by

calculating how much time earth needs to move from the respective starting to the

endpoint of a month (season). In the following, we derive a connection between the

true anomaly of any given time and the time elapsed since earth passed perihelion.

We first have a look at the mean anomaly M , i.e. the angle between the perihelion

and earth’s position based on the assumption that the orbit would be a perfect circle

(figure 2). The mean anomaly is defined by

M =
2 · π
T
· tP , (2.1)

where T is the orbital period (1 year, or 365 days) and tP is the time elapsed since

earth passed the perihelion. In order to obtain the true anomaly ϑ, taking into

account the eccentricity ε, we define the eccentric anomaly E via

E − ε · sin(E) = M . (2.2)

This equation can be solved using Newton’s method. Finally, we gain the true

anomaly:

ϑ = 2 · arctan

(√
1 + ε

1− ε
· tan(

e

2
)

)
. (2.3)

Figure 2: The mean, eccentric and true anomaly [KEP].

3

2.2 A calendar conversion method

If daily simulation data is available, new means can (and should) be calculated

using the daily output. If not, new means have to be calculated using only the

monthly means that are based on a modern calendar. For this purpose, we first

have to reconstruct the daily time series in a way that original monthly (seasonal)

mean averages are preserved. In the following, we present the mean preserving

reconstruction algorithm.

2.2.1 The mean preserving reconstruction algorithm

The mean preserving algorithm is presented in [MP]. The basic method is nothing

more than the usual running mean method with a box size (window size) of 3 days.

This method leads to a smooth but not necessarily mean preserving annual cycle. In

order to preserve the original means, a correction term is introduced later in section

2.2.2.

Let m be the given data set size and n the desired data set size. For our purpose of

reconstructing an annual cycle out of monthly (seasonal) averages, usual m ∈ {4, 12}
and n ∈ {365, 366}. Let AVG[m] be the input vector of monthly (seasonal) means

and VNEW [n] the output vector of size m,n respectively. We initialise VOLD(i),

i ∈ {1, . . . , n} so that each daily value equals the respective monthly mean:

VOLD(i) = AV G(im) ,

where im ∈ {1, . . . ,m} is the month (season) in which day i is included.

Then, for each i ∈ {1, . . . , n}, we calculate

Vn(i) =
1

3
· (Vm(i− 1) + Vm(i) + Vm(i+ 1)) . (2.4)

If we consider periodic data (like insolation), there are periodic boundary conditions:

VNEW (1) =
1

3
· (VOLD(365) + VOLD(1) + VOLD(2)) (2.5)

and

VNEW (365) =
1

3
· (VOLD(364) + VOLD(365) + VOLD(1)) . (2.6)

If not, the endpoint values are averaged using only one neighbour:

VNEW (1) =
1

2
· (VOLD(1) + VOLD(2)) , (2.7)

VNEW (365) =
1

2
· (VOLD(364) + VOLD(365)) . (2.8)

4

The vector VOLD is updated:

VOLD = VNEW . (2.9)

After at most n iterations the algorithm converges to a stable solution [MP].

2.2.2 Mean correction term

In every step i ∈ {1, . . . , n} we define a mean correction term C(mi) for each month

(season) mi ∈ {1, . . . ,m} by

C(mi) := AVG(mi)−
∑

i∈mi
VNEW (i)

|mi|
, (2.10)

so that C(mi) equals the desired monthly (seasonal) average minus the current

average. Adding the mean correction term to every VNEW (i) makes the monthly

average being exactly AVG(mi):

We update all VNEW (i), i ∈ {1, . . . , n} by

VNEW (i) = VNEW (i) + C(mi) . (2.11)

In figure 3 we present the result of the mean preserving algorithm after 365 iterations.

Figure 3: Reconstruction of an annual cycle of arbitrary monthly mean values (sim-

ilar to [MP, p. 228]).

5

The mean preserving algorithm does not have to be executed for each grid point (for

the usual Gaussian grid this would lead to 4608 executions per year) but only one

time per year. For each year Y , we define a conversion matrix τY which converts

data from the classical calendar into Y ’s angular calendar. Each column i of τY is

obtained by applying the conversion to an annual cycle which equals 1 in month i

and 0 in all other months. For details, see theorem 5.1 in the Appendix. Once we

defined the conversion matrix, the conversion of any annual cycle AV G[m] can be

executed by multiplying by τ :

AV GNEW [m] = τY · AV G[m] . (2.12)

For example, the matrix τ126 (rounded on two decimals) for converting monthly data

from the classical calendar to a 126 ka calendar is given by:



0.91 −0.08 0.02 0 0 0 0 0 0 0.01 −0.04 0.19

0.1 0.95 −0.03 0.01 0 0 0 0 0 0 0 −0.02

0 0.02 0.99 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0.01 1.02 −0.04 0.01 0 0 0 0 0

0 0 0 −0.02 0.08 1.01 −0.09 0.02 0 0 0 0

0 0 0 0.01 −0.04 0.2 0.94 −0.12 0.03 0 0 0

0 0 0 0 0 0.02 −0.09 0.45 0.73 −0.13 0.03 0

0 0 0 0 0 0 0.02 −0.09 0.47 0.71 −0.12 0.02

0.02 0 0 0 0 0 0 0.02 −0.09 0.42 0.75 −0.11

−0.1 0.02 0 0 0 0 0 0 0.01 −0.06 0.31 0.83



.

Considering again the arbitrary annual cycle from figure 3, the original monthly

mean vector

v =
(

0.5 0.55 0.65 1.2 1.25 0.35 0.5 0.8 1 1.1 1.3 1
)

is converted to v126 = τ126 · v:

v126 =
(

0.573 0.545 0.6545 1.2 1.278 0.4005 0.436 0.731 0.948 1.053 1.263 1.138
)
.

6

3 Implementation

3.1 General Information

The calendar conversion consists of two main parts:

1. Defining the angular calendar.

2. Computing new monthly means on the calendar.

(a) Compute unbiased monthly means directly using daily model output.

(b) Converting old monthly means into new monthly means (if no daily model

output is available).

The function calendar calculates the angular calendar for given orbital parameters,

the script newmonthlymeans daily.py computes new monthly means using daily

data while newmonthlymeans conv.py converts the monthly means using the

mean preserving algorithm from section 2.2.

Before describing the functions more detailed, we give an overview over some vari-

ables which appear everywhere in the code.

caltod vector containing month (season) lengths for today’s classical calendar

calpast vector containing angular month (season) lengths for the past

timtod/timpast vector containing starting days of the months (seasons) for today/past

w.r.t to caltod/calpast

bias vector containing the offset of calpast w.r.t caltod

VE angle between perihelion and NH vernal equinox (in degree)

(true anomaly as defined in section 2.1)

ε earth’s eccentricity

Sometimes, it is helpful to use the calendars (caltod/calpast), while sometimes you

need the starting days or the calendar offset (timtod/timpast/bias). The often-used

help function calcal returns for any given caltod and calpast the vectors timtod,

timpast and bias.

7

3.2 The angular calendar

Function calendar

Input parameter ε, VE, desired timesteps (seasons or months)

Output the angular calendar in integer and exact length (calpast)

For all calculations, where days are converted to angles or vice versa, we use equa-

tions (2.1), (2.2) and (2.3). Those calculations are executed using the subfunctions

day and ang. For any given true longitude, day computes the time that elapsed

since the perihelion, while ang computes the true longitude for any given time.

In our implementation, year length is approximated as 365 days and VE is fixed at

March, 21st at noon. For calculating a monthly angular calendar, the starting day

has to be shifted to the nearest start of a month, which is April 1st.

Since we cannot define April 1st as the day starting 10.5 days later than the VE

(we would again apply today’s calendar to a different orbital configuration, which

is exactly what we want to avoid defining the angular calendar) it seems reasonable

to also define April 1st via an angle. Therefore, we compute the angle between

nowaday’s VE and April 1st and use this as a definition for April 1st which can be

used for any orbital configuration.

The months (seasons) are then defined as 30◦ (90◦) segments of earth’s orbit. The

resultant lenghts are rounded using the largest remainder method: Each month

(season) first gets the respective ’integer-part’ number of days, the remaining days

are distributed by the size of the month’s (season’s) decimal parts.

3.3 Processing daily simulation data

In case daily simulation data is saved, new monthly means can be computed directly.

Script newmonthlymeans daily.py

executed by newmean bash daily.sh

Input files 12 files containing daily data for each month,

Further input parameter variable and year

Output files new means on the angular calendar

First, adapt the script to your needs:

1. Set the directory which contains the Input files as your working directory by

redefining ’outdir’.

8

2. Change the input file names by redefining ’daily’.

Start the script via ./newmean bash daily.sh year variable (name) variable (num-

ber), for example:

./newmean bash daily.sh 0900 tsurf 169

The output file is safed as daily year variable(name).nc .

3.4 The conversion

Script newmonthlymeans conv.py

executed by newmean bash conv.sh

Input files 12 files containing monthly data

Further input parameter variable and year

Output files new means using mean preserving algorithm

First, adapt the script to your needs:

1. Set the directory which contains the Input files as your working directory by

redefining ’outdir’.

2. Change the input file names by redefining ’month’.

Start the script via ./newmean bash conv.sh year variable (name) variable (number),

for example:

./newmean bash conv.sh 0900 tsurf 169

The output file is safed as daily conv variable(name).nc .

4 Results

4.1 The angular calendar

Without commenting too much we give the angular calendars and the respective or-

bital configuration for our test years 126 ka, 6 ka and present day (PD) as computed

via function ’calendar’ from section 3.2.

9

1. Orbital parameters

PD 126 ka 6 ka

eccentricity 0.016724 0.039726 0.018670

VE 282.157◦ 112.133◦ 181.750◦

2. Month’s lengths

PD 126 ka 6 ka

January 29 33 31

February 30 32 31

March 30 31 31

April 31 30 32

May 31 29 31

June 31 28 31

July 31 28 30

August 31 29 30

September 31 29 29

October 30 31 29

November 30 32 30

December 30 33 30

3. Season’s lengths

PD 126 ka 6 ka

Spring 93 89 93

Summer 93 85 89

Autumn 90 94 89

Winter 89 97 94

A short remark: Obviously, today’s season lengths are in phase with the orbital

definition of seasons, while today’s calendar is not an angular calendar.

10

4.2 The conversion

In this section we want to measure the performance of our conversion method. As

a measurement of how good the conversion approximates the new averages we use

RMSE, or 2-norm. For x = (x1, . . . , xn) the norm ‖x‖2 is defined by

‖x‖2 :=

(
n∑

i=1

x2i

) 1
2

. (4.13)

For each grid cell we have three vectors of monthly means. Let vc be the vector of

averages on the classical calendar, va the vector of averages on the angular calendar

and vm the result after our conversion method, using the mean preserving algorithm.

Hence, a measurement for the exactness of the conversion method is given by

Nm = ‖vm − va‖2 , (4.14)

which we compare to

Nc = ‖vc − va‖2 . (4.15)

Above’s definitions (4.14) and (4.15) are only locally, per grid cell. We gain a global

estimation by averaging over all norm deviations per grid cell. In figure 4, 5 and 6,

the such averaged norm deviation per year is shown for 100 years in 126 ka.

The following diagrams illustrate the method’s exactness for the top incoming solar

(short-wave) radiation (srad0d, figure 4), the surface temperature (tsurf, figure 5)

and the surface air pressure (aps, figure 6).

We see significant differences in the performance: The conversion method performs

really well for srad0d and is a clear improvement for tsurf. For a variable like aps

which is more influenced by internal variability and less directly influenced by solar

radiation, the method is not recommendable and we strongly suggest to keep daily

data if angular calendar means are needed.

11

Figure 4: Comparison of original means to conversion results: srad0d

Figure 5: Comparison of original means to conversion results: tsurf

12

Figure 6: Comparison of original means to conversion results: aps

Finally, we have a look at the norm deviation at different regions: In figure 7 and

8 the norm deviations Nm and Nc as defined in equations (4.14) and (4.15) for an

arbitrary year in 126 ka are shown. The differences between classical and angular

means occur to be greater at high and mid latitudes, where the seasonal variations

are bigger. After our conversion method, the results are clearly better but the effect

of strong seasonal variations at high and low latitudes still exists.

Figure 7: Comparison of original means to daily output means for variable tsurf.

13

Figure 8: Comparison of conversion results to daily output means for variable tsurf.

14

5 Appendix

Theorem 5.1. The calendar conversion based on the mean preserving algorithm can

be executed using only one climate-data-independent conversion matrix of dimension

n× n per year.

Sketch of proof. Let’s assume we want to convert monthly mean values, so n =

12. Both parts of the conversion (the reconstruction of the original cycle and the

calculation of new monthly means on a new calendar) are linear in the monthly

mean values : The annual cycle is reconstructed iteratively using equation 2.4 which

is clearly linear. New means can then be calculated directly, using the reconstructed

daily output, so this part is linear, too.

Then, let τ : R12 → R12 be the transformation, mapping the monthly mean vector

from an old calendar to the monthly mean vector on the new calendar. Since τ is

linear, we know for v ∈ R12

τ(v) = τ(
12∑
i=1

vi · ei) =
12∑
i=1

τ(vi · ei) =
12∑
i=1

τ(ei) · vi =


τ(e1)1 · · · τ(e12)1

...
...

τ(e1)12 · · · τ(e12)12

 ·

v1
...

v12


So, we gain the conversion matrix (τ(ej)i)i,j∈{1,...,12} by applying the conversion

method one time to each unit vector (e1, . . . , e12).

15

References

[BER] Berger, A. (1988): Milankovitch theory and climate, Rev. Geophys., 26, 624-

657.

[EPHEM] Montenbruck, O. (2005): Grundlagen der Ephemeridenrechnung, Spek-

trum Akademischer Verlag Heidelberg, p. 55-56.

[JOUBRAC] Joussaume, S., Braconnot, P. (1997): Sensitivity of paleoclimate sim-

ulation results to season definitions. Journal of Geophysics Research, Vol. 102,

No. D2, p. 1943-1956.

[KEP] Solving Kepler’s Equation of Elliptical Motion, at:

http://www.jgiesen.de/kepler/kepler.html (accessed at 11.07.2018).

[MP] Rymes, M. D., Myers, D. R. (2001): Mean preserving algorithm for smoothly

interpolating averaged data, Solar Energy, Vol.71, No. 4, p. 225-231.

[POLREU] Pollard, D., Reusch. D.B. (2002): A calendar conversion method for

monthly mean paleoclimate model output with orbital forcing. Journal of Geo-

physik Research, Vol. 107, No. D22, 4615, doi:10.1029/2002JD00212.

16

