Skip to content
Snippets Groups Projects
create_package.R 20.2 KiB
Newer Older
## Re-build the package ####
  devtools::document()
  devtools::check()
  devtools::build() # build package and tar ball
Boris Koch's avatar
Boris Koch committed
  devtools::build_manual(path = "../ume/inst") # build pdf documentation

  testthat::test_dir("tests/testthat/")

# Check package for suitability in CRAN
Boris Koch's avatar
Boris Koch committed
  system("cd D:/_AWI/_Daten/_git")
  system("R CMD check --as-cran ume_0.2.20.tar.gz")

# Copy tar ball and pdf to AWI server ####
  file.copy(
    from = paste0(getwd(), "_", utils::packageVersion("ume"), ".tar.gz"),
    to = paste0(
      r"(\\smb.isibhv.dmawi.de\projects-noreplica\p_ume\UME\ume_)",
      utils::packageVersion("ume"),
      ".tar.gz"
    ),
    overwrite = T
  )
  file.copy(
Boris Koch's avatar
Boris Koch committed
    from = paste0(getwd(), "/inst/ume_", utils::packageVersion("ume"), ".pdf"),
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812
    to = paste0(
      r"(\\smb.isibhv.dmawi.de\projects-noreplica\p_ume\UME\ume_)",
      utils::packageVersion("ume"),
      ".pdf"
    ),
    overwrite = T
  )



# Install ume package ####
# In case you already installed a previous version of ume:

  rm(list = ls()) # Bereinige die Arbeitsumgebung
  detach("package:ume", unload = TRUE)
  .rs.restartR()

  update.packages(ask = FALSE)
  install.packages("remotes")
  remotes::install_github("pmbrophy/mzDataTable")

# Install package with pre-built molecular formula libraries:
  devtools::install_gitlab(
    repo = 'bkoch/ume',
    host = "https://gitlab.awi.de",
    build_vignettes = TRUE,
    force = FALSE,
    dependencies = TRUE,
    upgrade = "ask"
  )

# Local installation
  utils::install.packages(
    "\\\\smb.isibhv.dmawi.de\\projects-noreplica\\p_ume\\UME\\ume_0.2.20.tar.gz",
    repos = NULL,
    type = "source"
  )

# Install molecular formula library package:
devtools::install_gitlab(
  repo = 'bkoch/ume.formulas',
  host = "https://gitlab.awi.de",
  build_vignettes = TRUE,
  build_manual = TRUE,
  dependencies = TRUE,
  force = TRUE
)

library(ume)
packageVersion("ume")
vignette("ume")
news(package = "ume")

library(data.table)
library(plotly)

mfd_filt_cal <-
  ume::process_orbi_data(
    fn = fn[1:2],
    auto_calibrate = TRUE,
    calibr_list = "marine_dom",
    c_iso_check = TRUE,
    formula_library = ume.formulas::lib_02,
    pol = "neg",
    ma_dev = 2,
    msg = TRUE
  )

## Test existing UME tools:
## Settings ####
setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
WD <-
  setwd(dirname(rstudioapi::getActiveDocumentContext()$path))
WD
source("../mcupw.R")

# Application: Fjord demo peaklist ####
library(ume)
vignette("ume")

library(ume.formulas) # only if not already installed
library(data.table)
library(plotly)

# Select peaklist from Fjord demo set ####
pl <- ume.formulas::ume_test_fjords
check_peaklist(pl)
data(package = "ume.formulas", lib_02)

# Recalibrate spectra ####
out <-
  ume::calc_recalibrate_ms(
    pl = pl,
    calibr_list = "cal_SRFA_OL_neg",
    pol = "neg",
    ma_dev = 1,
    msg = TRUE
  )

summary(out)

out$cal_stats
plot(out$cal_stats[, .(median_ma_before, median_ma_after)])
out$fig_hist_before
out$fig_hist_after
out$fig_box_before
out$fig_box_after

# Assign formulas ####
pl <- ume.formulas::ume_test_fjords

mfd <- ume_assign_formulas(
  pl = pl
  ,
  formula_library = ume.formulas::lib_02
  ,
  pol = "neg"
  ,
  ma_dev = 0.5
  ,
  msg = FALSE
)

mfd <- calc_norm_int(mfd, normalization = "sum_ubiq")

calc_data_summary(mfd)

names(mfd)

mfd_filt <- ume::ume_filter_formulas(
  mfd = mfd
  # , select_file_ids = c("Nsea_a", "Nsea_b", "Nsea_c")
  ,
  remove_blank_list = c("Blank")
  ,
  normalization = "sum_ubiq"
  ,
  norm_int_max = 0.9
  # , select_category = c("marine_dom")
  ,
  exclude_category = c("surfactant")
  # , c_iso_check = T
  # , n_iso_check = T
  # , s_iso_check = T
  # , ma_dev = 0.2
  # , dbe_max = 2
  # , dbe_o_min = 0
  ,
  dbe_o_max = 10
  ,
  p_min = 0,
  p_max = 0
  ,
  s_min = 0,
  s_max = 1
  ,
  n_min = 0,
  n_max = 2
  # , norm_int_min = 0.8
  # , n_rank = 400
  # , oc_min = 0, oc_max = 2.5
  # , hc_min = 0, hc_max = 3
  # , nc_min = 0, nc_max = 2
  # , mz_min = 200, mz_max = 650
  ,
  msg = TRUE
)

mfd_filt[, max(norm_int)]

uplot.vk(mfd_filt[ai > -2], z_var = "ai")

mfd_filt[n_occurrence_orig == 12, .(sum(i_magnitude), .N), file_id]
calc_data_summary(mfd_filt)
names(mfd_filt)
mfd_filt[, .N, .(file_id, int_ref)]

# Alternative using pipe operator:
mf_data_demo |>
  eval_isotopes(remove_isotopes = T) |>
  calc_eval_params() |>
  add_known_mf() |>
  order_columns()

# Alternative: using pipe operator.
mfd_filt <- ume.formulas::ume_test_fjords  |>
  ume_assign_formulas(
    formula_library = ume.formulas::lib_02,
    pol = "neg",
    ma_dev = 0.5,
    msg = T
  )  |>
  filter_mf_data(
    remove_blank_list = "Blank"
    ,
    exclude_category = c("surfactant")
    ,
    p_max = 0,
    n_max = 2,
    s_max = 1,
    dbe_o_max = 10,
    msg = T
  ) |>
  calc_norm_int(normalization = "sum_ubiq", msg = T)
filter_int(norm_int_max = 3, msg = T)

dim(mfd_filt)

## Benchmarking and memory issues ####

# https://stackoverflow.com/a/45458117
# http://adv-r.had.co.nz/Profiling.html
# http://adv-r.had.co.nz/memory.html#memory-profiling

devtools::install_github("hadley/lineprof")
library(lineprof)
library(microbenchmark)
library(data.table)

ume.formulas::lib_02[, .N, s]

# benchmarking
microbenchmark(
  mfd <-
    ume::assign_formulas(
      pl = ume.formulas::ume_test_fjords,
      formula_library = lib_02,
      pol = "neg",
      ma_dev = 0.2,
      msg = F
    ),
  mfd_old <-
    ume::assign_formulas_old(
      pl = ume.formulas::ume_test_fjords,
      formula_library = lib_02,
      pol = "neg",
      ma_dev = 0.2,
      msg = F
    ),
  times = 3
)

identical(mfd, mfd_old)

# Memory issues
l_new <-
  lineprof(
    assign_formulas(
      pl = ume.formulas::ume_test_fjords,
      formula_library = lib_02,
      pol = "neg",
      ma_dev = 0.2,
      msg = T
    )
  )
l_new
shine(l_new)

l_old <-
  lineprof(
    assign_formulas_old(
      pl = ume.formulas::ume_test_fjords,
      formula_library = lib_02,
      pol = "neg",
      ma_dev = 0.2,
      msg = T
    )
  )
l_old
shine(l_old)

## Memory issues: column formats (factor data type is smaller than character)
ls("package:ume")
pl <- ume.formulas::ume_test_fjords
pl[, file_id := as.factor(file_id)] # to do: check with Fabian and Marlo a general concept on "file_id"
str(pl)
sapply(pl, object.size)
object.size(pl)

# eval_isotopes
ume_new <- lineprof(
  ume_assign_formulas(
    pl = ume.formulas::ume_test_fjords
    ,
    formula_library = ume.formulas::lib_02
    ,
    pol = "neg"
    ,
    ma_dev = 0.2
    ,
    msg = T
  )
)


## Improve documentation ####
## https://roxygen2.r-lib.org/articles/rd.html
? assign_formulas

browser(devtools::check())


ume::chec# For UME package development ####
ume::load_mzml()
library("devtools") # For package building
library(roxygen2) # For package building
require(usethis) # For package building
library(testthat)
library(utils)
#library(available) # Checks if a package name already exists or name is problematic

# roxygenize
roxygen2::roxygenise()

# Call packages from tidyverse (contains pipe operator %>%, stringr, tibble, purrr (for map() function)):
library(magrittr) # pipe operator
#library(EnvStats)

tools::package_dependencies("ume", check = FALSE, depLevel = "Depends")

library(tidyverse)
avail_pks <- available.packages()
deps <-
  tools::package_dependencies(packages = avail_pks[1:200, "Package"],
    recursive = TRUE)

#argg <- c(as.list(environment()), list(...)) # This yields all function arguments and values in ellipsis
#names(inargs) # names of all arguments  in ellipsis
#names(args) # names of all arguments  in ellipsis


# box-plot in plotly ####

summary(out)
plot_ly(
  data = out$pl,
  y = ~ ppm,
  type = "box"
  ,
  color = ~ as.factor(calibration)
)


x <- fig_old %>% add_boxplot(fig_new)
x
y <-
  x %>% add_annotations(
    text = "Test",
    x = 0.2,
    y = 0.2,
    xref = "paper",
    yref = "paper",
    align = "left",
    bgcolor = "lightgrey",
    opacity = 0.8
  )
y


fig2 <-
  plot_ly(mf_data_demo[, .(nsp_type, ppm)],
    x = ~ nsp_type,
    y = ~ ppm,
    type = "box") %>%
  layout(
    title = "Avg. mass error for NSP combinations",
    xaxis = list(title = "All combinations of N, S, and P atoms"),
    yaxis = list(title = "Mass accuracy (ppm)")
  )
fig2

# MAINTENANCE ####

# Update known_mf ####
library(RMySQL)
library(data.table)
library(sam)
ch <- sam::f_sam_connect(user, pw)
known_mf <-
  data.table(DBI::dbGetQuery(ch, "SELECT * FROM MarChem.tab_ume_info_known_mf"))
DBI::dbDisconnect(ch)

known_mf[mf_kf_id == 302870]

usethis::use_data(known_mf,
  overwrite = TRUE,
  version = 3,
  compress = "xz")

# save(known_mf, file = "data/known_mf.rda", version = 2)

known_mf <- ume::known_mf


load("data/known_mf.rda")
known_mf

## New functions:_________________________ ####
## Intensity significance threshold (IST; provided by Maria da Silva) ####
## Taken from RMD file (email)

# Filter formulas shared in the repeated measurements

formulas.pool.shared <-
  formulas.pool[occurrence_count == max(formulas.pool$occurrence_count)]
length(unique(formulas.pool.shared$cf_id))
length(unique(formulas.pool.shared$measurement_id))

#scale rank in the samples and repeated measurements


formulas.pool.shared <-
  formulas.pool.shared %>% .[, `:=`(peak_intensity_rank, rank(peak_intensity,
    ties.method = "min")), by = "measurement_id"] %>% .[,
      `:=`(measurement_rank,
        rank(peak_intensity_rank, ties.method = "min")),
      by = "cf_id"]


formulas.smp.shared <-
  formulas.smp.shared %>% .[, `:=`(peak_intensity_rank, rank(peak_intensity,
    ties.method = "min")), by = "measurement_id"] %>% .[,
      `:=`(measurement_rank,
        rank(peak_intensity_rank, ties.method = "min")),
      by = "cf_id"]

#Function to test significance
#define groups
Groups.qc <-
  data.table(Measurement = unique(formulas.pool.shared$measurement_name) ,
    Group = "QC")

#calculate average spectra
LM_stats.intensity_average(formulas.pool.shared, Groups.qc, suffix = "qc")

#plot
var_tic <- plot_RI_repro_TIC(formulas.qc.avg)
var_bp <- plot_RI_repro_BP(formulas.qc.avg)

plot_intensityErrorDistribution(formulas.qc.avg, "peak_relint_tic")
plot_intensityErrorDistribution(formulas.qc.avg, "peak_relint_bp")

#rsd from average spectra
formulas.qc.avg[, peak_relint_tic_rsd := peak_relint_tic_sd / peak_relint_tic]
formulas.qc.avg[, peak_relint_bp_rsd := peak_relint_bp_sd / peak_relint_bp]

##scale ranks
formulas.pool.shared <- formulas.pool.shared %>%
  group_by(measurement_id) %>%
  mutate(xnorm = (peak_intensity_rank - min(peak_intensity_rank)) / (max(peak_intensity_rank) - min(peak_intensity_rank)))

formulas.smp.shared <- formulas.smp.shared %>%
  group_by(measurement_id) %>%
  mutate(xnorm = (peak_intensity_rank - min(peak_intensity_rank)) / (max(peak_intensity_rank) - min(peak_intensity_rank)))

#take scaled ranks across measurements
x <-
  dcast(formulas.pool.shared,
    formula_mass ~ measurement_id,
    value.var = "xnorm")
#calculate mean rank
rowMean <- apply(x[, -1], 1, FUN = mean)
#take max rank
rowMax <- apply(x[, -1], 1, FUN = max)
#calculate median rank
rowMedian <- apply(x[, -1], 1, FUN = median)
z <- melt(x, "formula_mass")

#create function for confidence interval
cof_int <- function(n, q, z) {
  j <- n * q - z * sqrt(n * q * (1 - q))
  k <- n * q + z * sqrt(n * q * (1 - q))

  return(list(j, k))
}

#find ith confidence interval
cof_int(10, 0.68, 1)

#find values for confidence interval
a <- 1
lower_limit <- vector()
upper_limit <- vector()

for (i in seq(1, nrow(x))) {
  row_mass <- sort(x[i, -1])
  lower_limit[a] <- nth(row_mass, 6)
  upper_limit[a] <- nth(row_mass, 9)
  a <- a + 1
}


#find rank threshold
limits <-
  as.data.frame(cbind(lower_limit, upper_limit, rowMean, x[, 1]))
limits$iqr <- upper_limit - lower_limit
limits$rsd <- (limits$iqr / limits$rowMean)
colnames(limits) <-
  c("lower_limit",
    "upper_limit",
    "peak_intensity_rank",
    "formula_mass",
    "iqr",
    "rsd")


#plot rank
var_rank <-
  ggplot(limits,
    aes(y = rsd * 100, x = peak_intensity_rank, color = measurement_name)) +
  geom_point(alpha = 0.1, color = "#1b9e77") +
  geom_smooth(method = "gam", color = "red") +
  labs(title = "", y = "RSD Normalized Intensity [%]", x = "mean ranked intensity") +
  theme_bw() +
  theme(panel.grid.major = element_blank(),
    panel.grid.minor = element_blank())

ggarrange(
  var_tic,
  var_bp,
  var_rank,
  labels = c("A", "B", "C"),
  ncol = 3,
  nrow = 1
)


#adjust model
gam.mdl_tic <-
  gam((peak_relint_tic_sd / peak_relint_tic) ~ s(peak_relint_tic),
    data = formulas.qc.avg)
gam.mdl_bp <-
  gam((peak_relint_bp_sd / peak_relint_bp) ~ s(peak_relint_bp), data = formulas.qc.avg)
gam.mdl_rank <- gam(rsd ~ s(peak_intensity_rank), data = limits)



#predict values
df_mdl_int_tic <-
  data.frame(
    "measurement_id" = formulas.smp.shared$measurement_id,
    "cf_id" = formulas.smp.shared$cf_id,
    "peak_relint_tic" = formulas.smp.shared$peak_relint_tic
  )
df_mdl_int_tic$predict_cv <-
  predict.gam(gam.mdl_tic, df_mdl_int_tic)
df_mdl_int_tic$sd <-
  df_mdl_int_tic$peak_relint_tic * df_mdl_int_tic$predict_cv

df_mdl_int_bp <-
  data.frame(
    "measurement_id" = formulas.smp.shared$measurement_id,
    "cf_id" = formulas.smp.shared$cf_id,
    "peak_relint_bp" = formulas.smp.shared$peak_relint_bp
  )
df_mdl_int_bp$predict_cv <- predict.gam(gam.mdl_bp, df_mdl_int_bp)
df_mdl_int_bp$sd <-
  df_mdl_int_bp$peak_relint_bp * df_mdl_int_bp$predict_cv

df_mdl_int_rank <-
  data.frame(
    "measurement_id" = formulas.smp.shared$measurement_id,
    "cf_id" = formulas.smp.shared$cf_id,
    "peak_intensity_rank" = formulas.smp.shared$xnorm,
    "peak_rank_orig" = formulas.smp.shared$peak_intensity_rank
  )
df_mdl_int_rank$predict_cv <-
  predict.gam(gam.mdl_rank, df_mdl_int_rank)
df_mdl_int_rank$sd <-
  df_mdl_int_rank$peak_rank_orig * df_mdl_int_rank$predict_cv

#transform data
df_mdl_int_tic <- as.data.table(df_mdl_int_tic)
df_mdl_int_bp <- as.data.table(df_mdl_int_bp)
df_mdl_int_rank <- as.data.table(df_mdl_int_rank)

#find lowest intensity across samples for each cf_id
low_mdl_tic <-
  df_mdl_int_tic[, .(min(peak_relint_tic),
    mean(peak_relint_tic),
    sd(peak_relint_tic)), by = "cf_id"]
low_mdl_bp <-
  df_mdl_int_bp[, .(min(peak_relint_bp),
    mean(peak_relint_bp),
    sd(peak_relint_bp)), by = "cf_id"]
low_mdl_rank <-
  df_mdl_int_rank[, .(min(peak_intensity_rank),
    mean(peak_rank_orig),
    sd(peak_rank_orig)), by = "cf_id"]

#rename columns
colnames(low_mdl_tic) <-
  c("cf_id",
    "peak_relint_tic",
    "peak_relint_tic_mean",
    "peak_relint_tic_sd")
colnames(low_mdl_bp) <-
  c("cf_id",
    "peak_relint_bp",
    "peak_relint_bp_mean",
    "peak_relint_bp_sd")
colnames(low_mdl_rank) <-
  c(
    "cf_id",
    "peak_intensity_rank",
    "peak_intensity_rank_mean",
    "peak_intensity_rank_sd"
  )

#calculate cv
low_mdl_tic$calculated_cv <-
  low_mdl_tic$peak_relint_tic_sd / low_mdl_tic$peak_relint_tic_mean
low_mdl_bp$calculated_cv <-
  low_mdl_bp$peak_relint_bp_sd / low_mdl_bp$peak_relint_bp_mean
low_mdl_rank$calculated_cv <-
  low_mdl_rank$peak_intensity_rank_sd / low_mdl_rank$peak_intensity_rank_mean

#find modeled cv for lowest intensity
low_mdl_tic$predict_cv <- predict.gam(gam.mdl_tic, low_mdl_tic)
low_mdl_bp$predict_cv <- predict.gam(gam.mdl_bp, low_mdl_bp)
low_mdl_rank$predict_cv <- predict.gam(gam.mdl_rank, low_mdl_rank)


#find formulas that are excluded by intensity threshold
n_excluded_tic <- low_mdl_tic[predict_cv < calculated_cv]
n_excluded_bp <- low_mdl_bp[predict_cv < calculated_cv]
n_excluded_rank <- low_mdl_rank[predict_cv < calculated_cv]

## Statistics: Cluster, MDS, PCA aus UltraMassExplorer ####
# Spreadsheet 09: "Statistics" ========================================

# _____________________________________________________________
# Cluster analysis and multi-dimensional scaling ####
# _____________________________________________________________

um_plot.cluster <- function(df, grp1)

{
  print("***************************************************")
  print("Plotting cluster diagram & multi-dimensional scaling...")


  df_pivot <-
    dcast(
      df,
      get(grp1) ~ mf,
      value.var = ri_stats,
      fun = mean,
      fill = 0
    )
  max_char <-
    max(nchar(as.character(df_pivot[, grp1]))) # Determine the length of axis label
  df_pivot <-
    data.frame(df_pivot) # convert data.table to dataframe
  rownames(df_pivot) = df_pivot[, 1] # create rownames from "grp1"
  df_pivot[, 1] = NULL # delete grp1 names

  if (length(unique(df$file_id)) > 2) {
    par(mfrow = c(1, 2))
    par(mar = c(max_char + 1, 7, 4, 2)) # optimize margins according to length of labels
    d <-
      vegdist(df_pivot, method = "bray") * 100 # scale distances to 100 instead 1
    h <- hclust(d, method = "average")
    plot(
      as.dendrogram(h),
      cex = 1,
      horiz = F,
      nodePar = NULL,
      ylab = "Bray-Curtis dissimilarity"
    ) # plot cluster

    # nodePar <- list(lab.cex = 0.6, pch = c(NA, 19), cex = 0.8, col = "blue")
    # plot(hcd,  type = "rectangle", nodePar = nodePar, xlab = "Height", horiz = TRUE) # Clustering as tree
    #cut = rect.hclust(hc,k=3)

    #plot(h, ylab="Bray-Curtis Similarity", main="", sub = "", xlab="", axes = FALSE, hang = -1)
    #lines(x = c(0,0), y = c(0,100), type = "n") # force extension of y axis
    #axis(side = 2, at = seq(0,100,10), labels = seq(100,0,-10), ylab="Bray-Curtis Similarity")

    # improvements:
    # http://www.sthda.com/english/wiki/beautiful-dendrogram-visualizations-in-r-5-must-known-methods-unsupervised-machine-learning
    # p <- ggdendro::ggdendrogram(h, rotate = FALSE, size = 2)
    # ggplotly(p)

    # _____________________________________________________________
    # Multi-dimensional scaling
    # _____________________________________________________________

    mds <- metaMDS(d, k = 2)
    fig <- ordiplot(mds, type = "none", display = "sites")
    points(fig, "sites", pch = "+", col = "black")
    orditorp(
      mds,
      display = "sites",
      cex = 1.2,
      air = .7,
      col = "grey"
    )
  }

  if (length(unique(df$file_id)) <= 2) {
    print("Statistical evaluation requires more than 2 samples in analysis!")
  }

}

# _____________________________________________________________
# Principal component analysis (PCA) ####
# https://sites.google.com/site/mb3gustame/reference/dissimilarity
# _____________________________________________________________

um_plot.pca <- function(df, grp1)

{
  df_pivot <-
    dcast(
      df,
      get(grp1) ~ mf,
      value.var = ri_stats,
      fun = mean,
      fill = 0
    )
  max_char <-
    max(nchar(as.character(df_pivot[, grp1]))) # Determine the length of axis label
  df_pivot <-
    data.frame(df_pivot) # convert data.table to dataframe
  rownames(df_pivot) = df_pivot[, 1] # create rownames from "grp1"
  df_pivot[, 1] = NULL # delete grp1 names

  # Remove columns with zero variance (PCA won't work with those)
  # https://stackoverflow.com/questions/40315227/how-to-solve-prcomp-default-cannot-rescale-a-constant-zero-column-to-unit-var
  df_pivot <- df_pivot[, which(apply(df_pivot, 2, var) != 0)]

  pca <- prcomp(df_pivot, scale. = T, rank. = 5)
  #summary(pca)
  #head(pca,2)
  #eigen(pca)

  t_score <- data.frame(pca$x) # show all scores
  t_score$files <- rownames(pca$x) # add file id as columnm
  t_score <- data.table(t_score) # convert to data.table
  #wcsv(t_score, "PC_scores.csv")

  # plot(pca) # Scree-Plot: how much variance in which PC?

  par(mfrow = c(1, 2))
  # plot rotated data ("scores") of samples, only component 1 vs 2
  plot(
    t_score[, 1:2],
    pch = 16,
    lwd = 2,
    xlab = paste("PC1", " (", signif(pca$sdev[1] ^ 2 / sum(pca$sdev ^
        2) * 100, 3), "%)", sep = ""),
    ylab = paste("PC2", " (", signif(pca$sdev[2] ^ 2 / sum(pca$sdev ^
        2) * 100, 3), "%)", sep = ""),
    main = "",
    xlim = c(min(t_score$PC1), max(t_score$PC1) * 1.5)
  )
  #points(pca$x[,c(1,2)], pch = 5, cex = 2, lwd = 2, col = "blue") # add points to an existing plot
  text(
    t_score[, 1:2],
    t_score$files,
    offset = 1,
    pos = 4,
    col = "red"
  ) # add text to a plot

  #biplot(pca)
  #scores(pca)
  #res_cov2 <- cov(df_pivot) # calculate covariance matrix
  #eigen(res_cov2)  # eigenvalues and eigenvectors (careful this costs computing power!!!)

  t <- data.frame(pca[2])
  colnames(t) <- colnames(pca$x)
  t$mf <- row.names(t)
  t <- data.table(t)
  df <- t[df, on = "mf"] # add principal components info
  df <- df[!is.na(PC1)]
  ume::uplot.vk(df,
    col = "redblue",
    col_bar = T,
    z_var = "PC1")

  return(pca)
}

ri_stats = "norm_int"
um_plot.cluster(df = mfd_filt, grp1 = "sample_tag",)