Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
{
"cells": [
{
"cell_type": "markdown",
"id": "8dbfa184-eab1-4239-be76-3ccc0396c2ea",
"metadata": {},
"source": [
"# Preliminary Cost Calculation"
]
},
{
"cell_type": "markdown",
"id": "55019cca-0984-4a6a-8d71-7d410e2a9377",
"metadata": {},
"source": [
"The transition to a cloud-based high-performance computing (HPC) system offers exciting opportunities for scalability, flexibility, and operational efficiency. However, understanding\n",
"the cost implications of such a move is critical to determining its feasibility for AWI. Unlike traditional on-premises systems with fixed capital expenditures and predictable\n",
"operating costs, cloud HPC introduces a dynamic cost structure based on resource consumption, storage, and data transfer. This flexibility can be both a benefit and a challenge, as costs\n",
"may fluctuate significantly depending on computational demand, storage requirements, and long-term usage patterns. In this section, we will analyze the cost components of cloud HPC, including\n",
"compute resources, storage, data egress, and additional factors such as training and workflow adaptation, to provide a clear picture of its financial viability.\n",
"\n",
"To generate an upper bound for the cost estimate, we propose a system that would replicate our current hardware and assume constant usage at maximum capacity. The cloud-based system's cost\n",
"is calculated based on the following components:\n",
"\n",
"* Compute Nodes\n",
"* Storage\n",
"* Data Retrieval\n",
"\n",
"For demostration purposes (and ease of use) we will base the examples on [Amazon Web Services' \"Cloud HPC\" concept](https://aws.amazon.com/hpc/solution-components/). \n",
"\n",
"## Compute Nodes\n",
"Amazon uses [Elastic Compute Cloud (designated as EC2 instances)](https://aws.amazon.com/ec2/) as the compute nodes. For cloud-based HPC applications, these need to be properly orchestrated,\n",
"and the AWS sub-service offering this is the [AWS Parallel Computing Service (AWS PCS)](https://aws.amazon.com/pcs/?refid=9aef7b0d-16dc-4679-bf76-6d20b57a4500). [Pricing](https://aws.amazon.com/pcs/pricing/) \n",
"based on the current size of Albedo (240 compute nodes) would be for a Medium size deployment:\n",
"\n",
"> Table 1: Slurm Controller sizes\n",
"\n",
"| Slurm Controller Size | Number of Instances Orchestrated | Number of Active & Queued Jobs |\n",
"|-----------------------|----------------------------------|--------------------------------|\n",
"| Small | Up to 32 | Up to 256 |\n",
"| **Medium** | **Up to 512** | **Up to 8192** |\n",
"| Large | Up to 2048 | Up to 16384 |"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "498d34e8-e1ec-4419-8531-b7bd264977f9",
"metadata": {},
"outputs": [],
"source": [
"import pint\n",
"from IPython.display import Markdown\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "771fd440-c2bc-45a5-bccc-2fa30f6094d4",
"metadata": {},
"outputs": [],
"source": [
"ureg = pint.UnitRegistry(preprocessors = [lambda s: s.replace(\"€\", \"EUR\")])\n",
"ureg.define(\"euro = [currency] = € = EUR\")\n",
"ureg.define(\"node = 1\")\n",
"hours_per_month = 30 * 24 * ureg.hour"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "d653d717-cecc-4e2f-aec4-72d6d65e2c0b",
"metadata": {},
"outputs": [],
"source": [
"instances = 240 * ureg(\"node\")"
]
},
{
"cell_type": "markdown",
"id": "970d5fd1-2060-4e83-a2c0-28b6b3a36520",
"metadata": {},
"source": [
"If we were to use the Regional pricing for Frankfurt (AWS designation `eu-central-1`):"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2a05c101-1b6c-49ea-b866-3ae3348ab16f",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"For 240 compute nodes we would need 21,767.11 euro / month in AWS PCS costs"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"controller_fee = 4.3841 * ureg(\"€ / hour\")\n",
"node_management_fee = 0.1077 * ureg(\"€ / hour / node\")\n",
"controller_cost = (controller_fee * hours_per_month) + (instances * node_management_fee * hours_per_month)\n",
"Markdown(f\"For {instances.magnitude} compute nodes we would need {controller_cost:,.2f} / month in AWS PCS costs\")"
]
},
{
"cell_type": "markdown",
"id": "3695a0e5-15de-4fd3-8db2-d89728f6839c",
"metadata": {},
"source": [
"**In addition** we also need to pay for the actual compute machines. Specifically, we would use `hpc6a.48xlarge`, as recommended [by AWS](https://aws.amazon.com/hpc/solution-components/) (see the section **Compute Intensive** under **Compute & Networking**) which have [the following characteristics](https://aws.amazon.com/ec2/instance-types/hpc6a/):\n",
"> Table 2: Compute node characteristics\n",
"\n",
"| Instance | AWS | Albedo |\n",
"| --- | --- | --- |\n",
"| Name | hpc6a.48xlarge | prod-[001-240] |\n",
"| Physical Cores | 192 | 128 |\n",
"| Memory (GiB) | 384 | 256 |\n",
"| EFA Network Bandwidth (Gbps) | 100 |\n",
"| Network Bandwidth (Gbps) | 25 |\n",
"\n",
"\n",
"These run on AMD EPYC 7003. For comparison, Albedo compute nodes use AMD EPYC 7702. Unfortunately, there does not seem to be any pricing information for `hpc6a.48xlarge` instances directly, however, a good estimate seems to be around 8€ / hour based on [other \"large\" or \"xlarge\" instances](https://aws.amazon.com/ec2/pricing/on-demand/). There is also a \"savings\" price for paying for compute in advance rather than on-demand, with typical reduction of about [±30%](https://aws.amazon.com/savingsplans/compute-pricing/). The following calculation uses this \"savings\" variant, with ~6€ / hour for compute nodes using the `c6a.48xlarge` instance as a compute node (note: without the `hpc` prefix!)."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "8de69f25-f1ec-4cc3-85b6-66ea5dd51ef5",
"metadata": {},
"outputs": [],
"source": [
"instance_fee = 5.95329 * ureg(\"€ / (hour * node)\")"
]
},
{
"cell_type": "markdown",
"id": "359624e6-dd61-45f2-8673-d8a03a87e64f",
"metadata": {},
"source": [
"Assuming we want a cluster with a similar size as Albedo:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0b50087c-f059-40e2-8f67-752a5d496cd0",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"Compute costs for 240 would be 1,028,728.51 euro per month in EC2 costs"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"compute_cost = hours_per_month * instance_fee * instances\n",
"Markdown(f\"Compute costs for {instances.magnitude} would be {compute_cost:,.2f} per month in EC2 costs\")"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6d198c1e-589b-40e6-b047-70ede86a4081",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"For 240 compute nodes and controller costs, we would have a total monthly bill of 1,050,495.62 euro for compute resources. Breaking this down per node and per month this would be: 4,377.07 euro / node / month, or 145.90 euro / node / day"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"total_compute_cost = compute_cost + controller_cost\n",
"total_compute_cost_per_node = total_compute_cost / instances\n",
"Markdown(f\"For {instances.magnitude} compute nodes and controller costs, we would have a total monthly bill of {total_compute_cost:,.2f} for compute resources. Breaking this down per node and per month this would be: {total_compute_cost_per_node:,.2f} / month, or {total_compute_cost_per_node/30:,.2f} / day\")"
]
},
{
"cell_type": "markdown",
"id": "93d85ce7-9e69-47ee-9495-dc2044598412",
"metadata": {},
"source": [
"## Storage\n",
"\n",
"There are several elements that need to considered for storage. For all calculations, we assume a total filesystem of 5Pb (similar to Albedo). "
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4b453e4e-50d8-4a91-957e-ce5d66f723cf",
"metadata": {},
"outputs": [],
"source": [
"ureg.define(\"iops = 1\")\n",
"ureg.define(\"mbs = 1\")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "07d2b3b9-d280-4222-9090-4f3f2e6d5e93",
"metadata": {},
"outputs": [],
"source": [
"data_amount = 5 * ureg(\"petabyte\")\n",
"iops_provisioned = 10_000 * ureg(\"iops\")\n",
"throughput_provisioned = 500 * ureg(\"mbs\")"
]
},
{
"cell_type": "markdown",
"id": "8754d19e-a175-4fe0-92be-69e8ceb47583",
"metadata": {},
"source": [
"Amazon recommends the [\"Elastic Block Storage\" (EBS)](https://aws.amazon.com/ebs/pricing/) as main storage (General Purpose SSD: gp3 or HDD backed storage: sc 1). We assume that we have 0.0952 euro/gigabyte-month for storage cost, 0.0006 euro per IOPS-month and 0.0448 euro per MB/s-month. We provision 10,000 IOPS and 500 MB/s for this volume. The first 3000 IOPs and 125 MB/s are free in the baseline performance."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "077bff95-35e7-4bdc-bf92-0b7adc5391e0",
"metadata": {},
"outputs": [],
"source": [
"volume_charge = 0.0952 * ureg(\"euro\") / (ureg(\"gigabyte\") * ureg(\"month\"))\n",
"iops_charge = 0.006 * ureg(\"euro\") / (ureg(\"iops\") * ureg(\"month\"))\n",
"throughput_charge = 0.048 * ureg(\"euro\") / (ureg(\"mbs\") * ureg(\"month\"))"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "dddbbc0d-0dd2-4fc1-a9ea-912fd3c361c3",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"Estimated costs for storage assuming 100% SSD usage: 476,060.00 euro / month"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"base_storage = (data_amount.to(\"gigabyte\") * volume_charge) \\\n",
"+ (iops_charge * (iops_provisioned - 3_000 * ureg(\"iops\"))) \\\n",
"+ (throughput_charge * (throughput_provisioned - 125*ureg(\"mbs\")))\n",
"Markdown(f\"Estimated costs for storage assuming 100% SSD usage: {base_storage:,.2f}\")"
]
},
{
"cell_type": "markdown",
"id": "5cfa487a-4720-47f5-95fd-9fffb6fde0b4",
"metadata": {},
"source": [
"Note that this calculation is probably an \"upper limit\", since we would not have 100% of the data on SSDs, and it assumes that the storage is at capacity. Real costs would be lower, since one only pays for actively blocked storage amount, and we would likely only have part of the data on SSD, with a majority on HDD. However, considerations such as snapshots have not been factored in, and these would cost extra. \n",
"\n",
"**Still to be clarified** \n",
"+ [ ] Does one need S3 \"on top\"?\n",
"+ [ ] Is [Amazon FSx for Lustre](https://aws.amazon.com/fsx/lustre/) extra, or a replacement for this?"
]
},
{
"cell_type": "markdown",
"id": "6fe42666-b2d0-454b-bd5c-3bcd3bc5e476",
"metadata": {},
"source": [
"## Network\n",
"Network appears to be automatically configured via the Amazon PCS, so there are no additional costs here."
]
},
{
"cell_type": "markdown",
"id": "ac7f1050-2818-4a84-a880-b8a69826f120",
"metadata": {},
"source": [
"## Data Retrival\n",
"\n",
"In additon, we need to consider that transfeing data into and out of AWS incures fees. According [to the documentation](https://aws.amazon.com/s3/pricing/?nc=sn&loc=4):\n",
"* First 10 Tb/Month: 0.09 Euro/GB\n",
"* Next 40 Tb/Month: 0.085 Euro/GB\n",
"* Next 100 Tb/Month: 0.07 Euro/GB\n",
"* Greater 150 TB/Month: 0.05 Euro/GB\n",
"\n",
"Assuming the total average user load -- so all users of the machine in sum -- might need to access 50 Tb of their data locally on AWI machines, this would be:"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "a076d16b-c5f0-4932-8795-c44bb9502b1e",
"metadata": {},
"outputs": [
{
"data": {
"text/markdown": [
"With very crude assumptions, we would use 4,300.00 euro for transfering data"
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"total_access = 50*ureg(\"terabyte\")\n",
"first_rate = 0.09 * ureg(\"euro / gigabyte\")\n",
"second_rate = 0.085 * ureg(\"euro / gigabyte\")\n",
"\n",
"data_transfer_cost = ((10*ureg(\"terabyte\").to(\"gigabyte\")*first_rate) + (40*ureg(\"terabyte\").to(\"gigabyte\")*second_rate))\n",
"Markdown(f\"With very crude assumptions, we would use {data_transfer_cost:,.2f} for transfering data\")"
]
},
{
"cell_type": "code",
"execution_count": 13,
"id": "0bf7422b-880f-4275-a118-9222579daa8f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"51,028.52 euro per day\n",
"1,530,855.62 euro per month\n",
"18,370,267.49 euro per year\n"
]
}
],
"source": [
"total = (base_storage*1*ureg(\"month\")) + total_compute_cost + data_transfer_cost\n",
"print(f\"{total/30.:,.2f} per day\")\n",
"print(f\"{total:,.2f} per month\")\n",
"print(f\"{total*12:,.2f} per year\")"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "9df69459-30ed-4511-b2b7-2917450e6485",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'plt' is not defined",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[1], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m plt\u001b[38;5;241m.\u001b[39mpie([base_storage\u001b[38;5;241m.\u001b[39mmagnitude, total_compute_cost\u001b[38;5;241m.\u001b[39mmagnitude, data_transfer_cost\u001b[38;5;241m.\u001b[39mmagnitude], labels\u001b[38;5;241m=\u001b[39m[\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mStorage\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mCompute\u001b[39m\u001b[38;5;124m\"\u001b[39m, \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mData Access\u001b[39m\u001b[38;5;124m\"\u001b[39m])\n",
"\u001b[1;31mNameError\u001b[0m: name 'plt' is not defined"
]
}
],
"source": [
"plt.pie([base_storage.magnitude, total_compute_cost.magnitude, data_transfer_cost.magnitude], labels=[\"Storage\", \"Compute\", \"Data Access\"]);"
]
},
{
"cell_type": "markdown",
"id": "6e3356bd-b423-4f6b-9e9d-f6811d260f8f",
"metadata": {},
"source": [
"## Some other comparisons\n",
"* Gregor Knorr kindly provided an estimate of costs he had used for EU Funding proposals: 9.70 Euros/day/node on DKRZ, without storage considerations.\n",
"* AWI's Controlling calculates 10 Euros/day/node for Albedo, also without storage considerations."
]
},
{
"cell_type": "markdown",
"id": "f778eea0-5f98-4476-84f5-00a5267aed61",
"metadata": {},
"source": [
"## AWS Pricing Calculator\n",
"A preliminary \"click through\" of the pricing can be found here: https://calculator.aws/#/estimate?id=e1067ac67b8108402c80dcbd0dadef5eb61d6b3d. The exact sum is different, but on the same order of magnitude."
]
},
{
"cell_type": "markdown",
"id": "4adcbb60-210c-4201-a4aa-95db35bc3438",
"metadata": {},
"source": [
"```{admonition} Bottom Line\n",
"Even accounting for this being an upper-bound estimate, replicating an HPC cluster comparable in scope to Albedo would result in costs that are **10 to 15 times higher** than maintaining an on-site local HPC system.\n",
},
{
"cell_type": "code",
"execution_count": null,
"id": "b1cc756d-f0dc-45da-a144-9a88f29da767",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Paul Sandbox",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}