createCalculationTables.m 6.61 KiB
function [a, b, c] = createCalculationTables(pRfb, pSoundsources, pTrackingParameter, pToaData, pSatData, pSoundvelocity, pLeapsecondsMatrix)
%CREATECALCULATIONMATRICES Summary of this function goes here
% Detailed explanation goes here
%% Initialize required variables
%pSoundsources = artoa.controller.getSoundsourcesWithAppliedToa();
satPositions = [pSatData.lat_sat, pSatData.lon_sat];
satDates = artoa.convert.dmy2rd(pSatData.day_sat, pSatData.month_sat, pSatData.year_sat);
toaDates = [];
satToas = [];
satDistances = [];
floatDetails = pRfb.FLOAT;
%% Create table
results = struct();
%% Calculate SAT TOAs for every soundsource and get nearest neighbor measured toa
fnames = fieldnames(pSoundsources);
for i = 1:length(fnames)
results.(fnames{i}) = table();
% get start and end date of soundsource
soundSourceBegin = artoa.convert.dmy2rd(pSoundsources.(fnames{i}).begemis(3), ...
pSoundsources.(fnames{i}).begemis(2), ...
pSoundsources.(fnames{i}).begemis(1));
soundSourceEnd = artoa.convert.dmy2rd(pSoundsources.(fnames{i}).endemis(3), ...
pSoundsources.(fnames{i}).endemis(2), ...
pSoundsources.(fnames{i}).endemis(1));
try
soundvelocity = pSoundvelocity{fnames{i}, 1};
catch
soundvelocity = pSoundvelocity{1, 1};
end
[date, toa] = artoa.toa.predictFromGps( ...
pRfb, ...
pSoundsources.(fnames{i}), ...
soundvelocity, ...
pLeapsecondsMatrix ...
);
results.(fnames{i}).satDate = date;
results.(fnames{i}).satToa = toa;
results.(fnames{i}).daysSinceStart = ...
date ...
- artoa.convert.dmy2rd( ...
pSoundsources.(fnames{i}).begemis(3), ...
pSoundsources.(fnames{i}).begemis(2), ...
pSoundsources.(fnames{i}).begemis(1) ...
);
tmpDistances = NaN(size(satPositions, 1), 1);
% calculate distances
for oDistance = 1:length(toa)
if isnan(toa(oDistance)) | any(isnan(satPositions(oDistance, :)))
%tmpDistances = [tmpDistances; NaN];
continue;
end
tmpDistances(oDistance) = artoa.data.calculateGeodist( ...
satPositions(oDistance, :), ...
pSoundsources.(fnames{i}).position ...
);
end
results.(fnames{i}).satDistances = tmpDistances;
% set all sat dates to NaN that are not in soundsource mission range
satDatesInRangeIndex = ...
(results.(fnames{i}).satDate >= soundSourceBegin) ...
& (results.(fnames{i}).satDate <= soundSourceEnd);
results.(fnames{i}).satDate(~satDatesInRangeIndex) = NaN;
results.(fnames{i}).satToa(~satDatesInRangeIndex) = NaN;
results.(fnames{i}).daysSinceStart(~satDatesInRangeIndex) = NaN;
results.(fnames{i}).satDistances(~satDatesInRangeIndex) = NaN;
% find nearest neighbor toa
tmpMeasuredToas = NaN(size(results.(fnames{i}).satDate));
tmpIndexBelongingToSoso = strcmp(pToaData.soundSource, fnames{i});
if ~any(tmpIndexBelongingToSoso) % no toa available so save NaN
results.(fnames{i}).measuredToa = tmpMeasuredToas;
continue;
end
tmpIndexBelongingToSoso = tmpIndexBelongingToSoso & (pToaData.status == 1);
tmpToaDate = pToaData.toaDate(tmpIndexBelongingToSoso);
tmpToa = pToaData.toa(tmpIndexBelongingToSoso);
% interpolate toa data
if ~strcmp(lower(pTrackingParameter.interpolationMethodString), 'none')
[ ...
tmpToaDate, ...
tmpToa, ...
~ ...
] = artoa.data.interpolateRafosData( ...
tmpToaDate, ...
tmpToa, ...
pTrackingParameter.interpolationInterval, ...
pTrackingParameter.gapSize, ...
lower(pTrackingParameter.interpolationMethodString) ...
);
end
results.(fnames{i}).measuredToa = NaN(size(results.(fnames{i}).satDate));
% find measured toa dates that belong to a sat date
[values, satIndex, toaIndex] = intersect(results.(fnames{i}).satDate, ceil(tmpToaDate));
results.(fnames{i}).measuredToa(satIndex) = tmpToa(toaIndex);
% find nearest neighbor
% for oSatDates = 1:length(results.(fnames{i}).satDate)
% tmpSatDate = results.(fnames{i}).satDate(oSatDates);
% neighborDate = artoa.data.findNearestNeighbor( ...
% tmpToaDate, ...
% tmpSatDate ...
% );
% if abs(neighborDate - tmpSatDate) <= pTrackingParameter.gapSize
% tmpMeasuredToas(oSatDates) = tmpToa(tmpToaDate == neighborDate);
% end
% end
% results.(fnames{i}).measuredToa = tmpMeasuredToas;
clear tmpDistances;
end
%% Construct matrices A and B
rowCount = length(satDates) * length(fnames);
aSoundsources = table();
%aCore = zeros(rowCount, 2 * length(fnames));
%b = zeros(rowCount, 1);
b = table(zeros(rowCount, 1), 'VariableNames', {'toa'});
c = table(zeros(rowCount, 1), 'VariableNames', {'ReferenceTime'});
Distances = zeros(rowCount, 1);
daysSinceFloatStart = NaN(rowCount, 1);
% disable warning because table produces a lot when adding the soundsources
warning('off');
for i = 1:length(fnames)
aSoundsources{:, (fnames{i})} = 0;
rowIndices = ((i - 1) * length(satDates) + 1):i * length(satDates);
%startColIndex = (2 * (i - 1)) + 1;
Distances(rowIndices, 1) = results.(fnames{i}).satDistances;
%aCore(rowIndices, startColIndex) = 1;
%aCore(rowIndices, startColIndex + 1) = results.(fnames{i}).daysSinceStart;
aSoundsources{rowIndices, (fnames{i})} = results.(fnames{i}).daysSinceStart;
b{rowIndices, 'toa'} = results.(fnames{i}).measuredToa;
c{rowIndices, 'ReferenceTime'} = ...
(pSoundsources.(fnames{i}).reftime(1) * 3600 + pSoundsources.(fnames{i}).reftime(2) * 60) ...
- (floatDetails.phasereftime(1) * 3600 + floatDetails.phasereftime(2) * 60 + floatDetails.windowstart * 60);
daysSinceFloatStart(rowIndices, 1) = ...
results.(fnames{i}).satDate ...
- artoa.convert.dmy2rd( ...
floatDetails.launchtime(3), ...
floatDetails.launchtime(2), ...
floatDetails.launchtime(1) ...
);
% construct b
% foundToas = findCorrespondingToas(fnames{i}, results.(fnames{i}).satDate);
end
a = addvars(aSoundsources, Distances, 'Before', 1); % add distances to soundsource
a.Float = daysSinceFloatStart; % append float days since start
% a = [ ...
% Distances, aCore{:, :}, ones(size(daysSinceFloatStart)), daysSinceFloatStart ...
% ];
% remove all NaN from matrix
indicesToUse = all(~isnan(a{:, :}), 2) & all(aSoundsources{:, :} >= 0, 2) & ~isnan(b{:, :});
a = a(indicesToUse, :);
b = b(indicesToUse, :);
c = c(indicesToUse, :);
% reenable warning
warning('on');
end