Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
artoa4argo
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
argoTools
artoa4argo
Commits
2b2263a7
Commit
2b2263a7
authored
5 years ago
by
leprob001
Browse files
Options
Downloads
Patches
Plain Diff
Added ls_converge function to the vendor package.
parent
7a4a682e
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
lib/+artoa/+vendor/ls_converge.m
+200
-0
200 additions, 0 deletions
lib/+artoa/+vendor/ls_converge.m
with
200 additions
and
0 deletions
lib/+artoa/+vendor/ls_converge.m
0 → 100644
+
200
−
0
View file @
2b2263a7
% ls_converge Tracking with the least squares procedure.
%
% SYNOPSIS:
% function [x_new] = ls_converge (xgu, nals, sspos, dist, sv)
%
% DESCRIPTION: Return the [latitude longitude] (radians) of a position
% based on the least squares tracking method.
%
% ARGUMENTS:
% xgu is the guess at the position, usually the previous position.
% Stored as [lat lon] degrees.
% If the drift is to be computed it is stored as the third
% element of the vector, xgu(3).
%
% nals is the number of sound sources.
%
% sspos is the sound source positions corresponding to distances.
%
% dist is distance to sound source, km.
%
% sv is the sound velocity (km/sec) as determined from the current
% temperature.
%
% Code by Roger Goldsmith, WHOI
% kindly provided by Heather D. Hunt, WHOI
%
function
[
x_new
]
=
ls_converge
(
xgu
,
nals
,
sspos
,
dist
,
sv
)
RAD
=
180
/
pi
;
KM_PER_DEG
=
111.324
;
mtry
=
30
;
rate
=
sv
;
% fprintf ('LS1 %10.4f %10.4f\n', dist(1)/sv, dist(2)/sv);
% fprintf ('LS2 %10.4f %10.4f %10.4f\n', dist(1)/sv, dist(2)/sv, dist(3)/sv);
drft_init
=
0.0
;
drft
=
0.0
;
do_time
=
0
;
oldpos
(
1
:
2
)
=
xgu
(
1
:
2
);
%oldpos(2) = xgu(2);
if
(
length
(
xgu
)
>
2
)
do_time
=
1
;
drft_init
=
xgu
(
3
);
drft
=
drft_init
;
end
% if
%
xpos
=
xgu
/
RAD
;
% convert 'oldpos' (degrees) to 'xpos' (radians).
itry
=
0
;
% start value for number of iterations performed.
cradius
=
100.0
;
% the start value for the convergence radius
while
cradius
>
0.05
alpha_beta
=
0.0
;
alpha_sqd
=
0.0
;
alpha_tau
=
0.0
;
beta_sqd
=
0.0
;
beta_tau
=
0.0
;
sum_alpha
=
0.0
;
sum_beta
=
0.0
;
sum_tau
=
0.0
;
% Loop through the sources collecting terms. Throw out the source if zero.
nals_act
=
0
;
for
i
=
1
:
nals
%if (dist(i) >= 0) % NOT A GOOD TEST, LOOK FOR TIME = 0
if
(
~
isnan
(
dist
(
i
)))
% Is this a better approach?
% Get the distance from last position to source.
% Contrary to the documentation in ELLIPK2, the bearing is returned in degrees.
sosopos
=
[
sspos
(
i
,
1
)
sspos
(
i
,
2
)];
[
db
(
1
),
db
(
2
)]
=
artoa
.
data
.
calculateEllipk2
(
xpos
,
sosopos
/
RAD
);
dst
=
db
(
1
);
beta
=
cos
(
db
(
2
)/
RAD
)/
rate
;
alpha
=
sin
(
db
(
2
)/
RAD
)/
rate
;
tau
=
(
dist
(
i
)
-
dst
)/
rate
-
drft_init
+
drft
;
% fprintf ('TAU: %3d %2d %8.2f %8.2f %8.2f %8.2f %8.2f\n', itry,i,dist(i),dst,drft_init,drft,tau);
alpha_beta
=
alpha_beta
+
alpha
*
beta
;
alpha_sqd
=
alpha_sqd
+
alpha
*
alpha
;
alpha_tau
=
alpha_tau
+
alpha
*
tau
;
beta_sqd
=
beta_sqd
+
beta
*
beta
;
beta_tau
=
beta_tau
+
beta
*
tau
;
% fprintf ('LS3 %d %7.2f %7.2f %7.2f %6.2f\n', i, dist(i), dst, tau, db(2) );
if
(
do_time
==
1
)
sum_alpha
=
sum_alpha
+
alpha
;
sum_beta
=
sum_beta
+
beta
;
sum_tau
=
sum_tau
+
tau
;
end
% if
nals_act
=
nals_act
+
1
;
% the actual number of available sosos.
end
% if distance was greater zero
end
% for i = loop over all sources
if
(
itry
==
0
&
nals_act
~=
nals
)
if
(
nals_act
<
2
)
% less than two sources available
fprintf
(
' *** NOT ENOUGHT VALID POINTS.\n'
);
x_new
=
NaN
*
size
(
oldpos
);
return
;
end
% if
end
% if
% Set the test criteria to one degree.
stest
=
sin
(
1.0
/
RAD
)
*
nals_act
/
rate
;
stest
=
stest
*
stest
;
%
% Compute corrections.
alpha_sqd
=
alpha_sqd
-
sum_alpha
*
sum_alpha
/
nals_act
;
alpha_beta
=
alpha_beta
-
sum_alpha
*
sum_beta
/
nals_act
;
alpha_tau
=
alpha_tau
-
sum_alpha
*
sum_tau
/
nals_act
;
beta_sqd
=
beta_sqd
-
sum_beta
*
sum_beta
/
nals_act
;
beta_tau
=
beta_tau
-
sum_beta
*
sum_tau
/
nals_act
;
denom
=
alpha_sqd
*
beta_sqd
-
alpha_beta
*
alpha_beta
;
if
(
denom
==
0
)
denom
=
stest
;
end
% if
if
(
abs
(
denom
)
<
stest
)
denom
=
sign
(
denom
)
*
stest
;
end
% if
xx
=
(
alpha_tau
*
beta_sqd
-
alpha_beta
*
beta_tau
)/
denom
;
yy
=
(
alpha_sqd
*
beta_tau
-
alpha_beta
*
alpha_tau
)/
denom
;
% Update guess then test radius for threshold.
cradius
=
xx
*
xx
+
yy
*
yy
;
if
(
do_time
==
1
)
drft_corr
=
(
-
sum_tau
+
xx
*
sum_alpha
+
yy
*
sum_beta
)/
nals_act
;
cradius
=
cradius
+
(
drft_corr
*
rate
)
.^
2
;
drft
=
drft
+
drft_corr
;
end
% if
% fprintf ('LS4 %3d %10.2f %10.4f%10.6f %10.3f%10.5f %10.2f%10.4f\n', itry, -sum_tau, xx, sum_alpha, yy, sum_beta, drft_corr, drft );
if
(
cradius
>
0
)
cradius
=
sqrt
(
cradius
);
else
cradius
=
0.0
;
end
% if
bear
=
atan2
(
xx
,
yy
);
t1p
=
sin
(
oldpos
(
1
)/
RAD
)
*
cos
(
cradius
/
KM_PER_DEG
/
RAD
)
+
...
cos
(
oldpos
(
1
)/
RAD
)
*
sin
(
cradius
/
KM_PER_DEG
/
RAD
)
*
...
cos
(
bear
);
t1
=
cos
((
90.0
-
oldpos
(
1
))/
RAD
)
*
cos
(
cradius
/
KM_PER_DEG
/
RAD
)
+
...
sin
((
90.0
-
oldpos
(
1
))/
RAD
)
*
sin
(
cradius
/
KM_PER_DEG
/
RAD
)
*
...
cos
(
bear
);
t1_rad
=
acos
(
t1
);
t1p_rad
=
acos
(
t1p
);
t1_deg
=
90.0
-
t1_rad
*
RAD
;
t1p_deg
=
90.0
-
t1p_rad
*
RAD
;
t2
=
sin
(
cradius
/
KM_PER_DEG
/
RAD
)
*
sin
(
bear
)
/
sin
(
t1_rad
);
t2p
=
sin
(
cradius
/
KM_PER_DEG
/
RAD
)
*
sin
(
bear
)
/
sin
(
t1_rad
);
if
(
abs
(
t2
)
>
1.0
)
t2
=
sign
(
t2
);
end
% if
if
(
abs
(
t2p
)
>
1.0
)
t2p
=
sign
(
t2p
);
end
% if
t2_rad
=
asin
(
t2
)
+
oldpos
(
2
)/
RAD
;
t2p_rad
=
asin
(
t2p
)
+
oldpos
(
2
)/
RAD
;
t2_deg
=
t2_rad
*
RAD
;
t2p_deg
=
t2p_rad
*
RAD
;
xpos
=
[
t1_deg
/
RAD
t2_rad
];
xposp
=
[
t1p_deg
/
RAD
t2p_rad
];
% fprintf ('LS5 %3d %5.3f %6.2f %6.2f %6.2f %6.1f %8.4f %9.4f\n', itry, denom, xx, yy, cradius, bear*RAD, xpos(2)*RAD, xpos(1)*RAD)
itry
=
itry
+
1
;
if
(
itry
>
mtry
)
fprintf
(
' *** NO CONVERGENCE AFTER %d ITERATIONS.\n'
,
mtry
);
x_new
=
NaN
*
size
(
oldpos
);
return
;
end
% if
oldpos
=
xpos
*
RAD
;
%oldpos(2) = xpos(2)*RAD;
oldposp
=
xposp
*
RAD
;
%oldposp(2) = xposp(2)*RAD;
oldpos
=
xposp
*
RAD
;
%oldpos(2) = xposp(2)*RAD;
end
% while cradius
x_new
=
xpos
;
if
(
do_time
==
1
)
x_new
(
3
)
=
drft
;
end
% if
%fprintf (' #S%2d ', nals_act);
%fprintf('ls-');
clear
alpha
alpha_beta
alpha_sqd
alpha_tau
;
clear
beta
beta_sqd
beta_tau
clear
cradius
;
clear
db
denom
dst
;
clear
i
itry
;
clear
rate
;
clear
ssq
stest
;
clear
sosopos
;
clear
sum_alpha
sum_beta
sum_tau
;
clear
t1
t1_rad
t1_deg
;
clear
tau
;
clear
xpos
oldpos
;
clear
xx
yy
;
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment