Skip to content
Snippets Groups Projects
Commit cc29f047 authored by leprob001's avatar leprob001
Browse files

Restructured calculateEllipk2 and calculateGeodist.

parent 61eea945
No related branches found
No related tags found
No related merge requests found
function [abstand,ang] = calculateEllipk2(st,sc)
%function [abstand,ang] = ellipk2(st,sc)
%
% routine computes great arc distance z in kilometers on a spheroid
% with flattening =1/295=.00339 using the andoyer-lambert approximation.
function [abstand, angle] = calculateEllipk2(st, sc)
%CALCULATEELLIPK2 Computes great arc distance z in kilometers on a spheroid.
% Does flattening =1/295=.00339 using the andoyer-lambert approximation.
% z is the distance from sc to st and ang is the bearing from sc to
% st in true radians rel. to north.
% the coordinates for sc and st(lat,long) must be in radians. this and
......@@ -20,41 +18,42 @@ function [abstand,ang] = calculateEllipk2(st,sc)
% but works for my case.
%
snst=sin(st(:,1));
snsc=sin(sc(:,1));
cfz = snst .* snsc + cos(st(:,1)) .* cos(sc(:,1)) .* cos(st(:,2)-sc(:,2));
snst = sin(st(:, 1));
snsc = sin(sc(:, 1));
cfz = snst .* snsc + cos(st(:, 1)) .* cos(sc(:, 1)) .* cos(st(:, 2) - sc(:, 2));
z = 1 - cfz .* cfz;
if z > 0
sfz=sqrt(z);
z=atan2(sfz,cfz);
a=snst-snsc;
b=snst+snsc;
delz = (z+3*sfz) ./ (1.-cfz) .*a .*a;
delz = .84752e-3 * (delz + (z-3.*sfz) ./ (1.+cfz) .*b .*b);
z=6378.0*(z-delz);
sfz = sqrt(z);
z = atan2(sfz, cfz);
a = snst - snsc;
b = snst + snsc;
delz = (z + 3 * sfz) ./ (1. - cfz) .* a .* a;
delz = .84752e-3 * (delz + (z-3. * sfz) ./ (1. + cfz) .* b .* b);
z = 6378.0 * (z - delz);
% compute bearing...
ang1 = cos(sc(:,1)) .* tan(st(:,1)) - sin(sc(:,1)) .* cos(sc(:,2)-st(:,2));
if ang1 ~= 0,
ang = atan(sin(sc(:,2)-st(:,2))./ang1);
for ii=1:length(st(:,1)),
if ang1 < 0,
if sc(ii,1) > st(ii,1),
ang = ang + pi;
end
if sc(ii,1) < st(ii,1),
ang = ang - pi;
ang1 = cos(sc(:, 1)) .* tan(st(:, 1)) - sin(sc(:, 1)) .* cos(sc(:, 2) - st(:, 2));
if ang1 ~= 0
angle = atan(sin(sc(:,2)-st(:,2))./ang1);
for ii=1:length(st(:,1))
if ang1 < 0
if sc(ii,1) > st(ii,1)
angle = angle + pi;
end
if sc(ii,1) < st(ii,1)
angle = angle - pi;
end
end
end
ang = 2 * pi - ang;
ang = ang / pi * 180;
angle = 2 * pi - angle;
angle = angle / pi * 180;
end
end
else
z=NaN;
ang = NaN;
end
else
z = NaN;
angle = NaN;
% fprintf('error because distance <= 0')
end
abstand=z;
%the end
end
abstand = z;
end
% GEODIST calculate the distance and bearing between two positions
function [distance, angle] = calculateGeodist(pPosition1, pPosition2, pUnit)
%CALCULATEGEODIST Calculate the distance and bearing between the two positions.
% Calculates the distance and bearing between pos1 and pos2. The optional
% parameter 'pUnit' specifies if the positions are in degrees ('degree') or
% in radiant ('rad'). If unit is not given, 'degree' would be the default.
%
% SYNOPSIS:
% function [dist,ang] = geodist(pos1,pos2,unit)
% Goedist returns distance from pPosition1 to pPosition2 (dist) and the bearing
% from pPosition1 to pPosition2 (ang) in degrees rel. to north.
%
% DESCRIPTION:
% Calculates the distance and bearing between pos1 and pos2. The optional
% parameter 'unit' specifies if the positions are in degrees ('degree') or
% in radiant ('rad'). If unit is not given, 'degree' would be the default.
% Parameters:
% pPosition1 (double) 1D-Vector with two values, latitude and
% longitude.
% pPosition2 (double) 1D-Vector with two values, latitude and
% longitude.
% pUnit (char) Specifies if positions are in degrees or
% radiant.
%
% Goedist returns distance from pos1 to pos2 (dist) and the bearing from
% pos1 to pos2 (ang) in degrees rel. to north.
%
%
% rlat=[pos1(1),pos2(1)]
% rlon=[pos1(2),pos2(2)]
%
% calls function ellipk2 to calculate distance and bearing
function [dist,ang] = calculateGeodist(pos1,pos2,unit)
% Returns:
% distance (double) The calculated distance.
% angle (double) The calculated bearing in degrees rel. to
% north.
%% Parameter check
if nargin < 3
unit='degree';
pUnit='degree';
end
rlat=[pos1(1),pos2(1)];
rlon=[pos1(2),pos2(2)];
%% Convert input
rlat = [pPosition1(1), pPosition2(1)];
rlon = [pPosition1(2), pPosition2(2)];
if strcmp(unit,'degree')
if strcmp(pUnit,'degree')
% rad = degree/180*pi !
rlat = rlat / 180 * pi;
rlon = rlon / 180 * pi;
end
s=size(rlat);
if s(1) > 1
rlat_size = size(rlat);
if rlat_size(1) > 1
% make sure that rlat and rlon have more rows than columns
if s(1) < s(2)
rlat=rlat';
rlon=rlon';
if rlat_size(1) < rlat_size(2)
rlat = rlat';
rlon = rlon';
end
end
st=[rlat(:,1) rlon(:,1)];
sc=[rlat(:,2) rlon(:,2)];
[dist,ang] = artoa.data.calculateEllipk2(st,sc);
% dist is the distance from sc to st and ang is the bearing from sc to
% st in degrees rel. to north.
st = [rlat(:,1) rlon(:,1)];
sc = [rlat(:,2) rlon(:,2)];
[distance, angle] = artoa.data.calculateEllipk2(st, sc);
end
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment