solve.m 3.23 KiB
function [a, b, x] = solve(pRfb, pSoundsources, pSatData, pAppliedTemperature, pAppliedPressure, pSoundspeedMethod, pLeapsecondsMatrix)
%UNTITLED Summary of this function goes here
% Detailed explanation goes here
%% Initialize required variables
%pSoundsources = artoa.controller.getSoundsourcesWithAppliedToa();
satPositions = [pSatData.lat_sat, pSatData.lon_sat];
satDates = artoa.convert.dmy2rd(pSatData.day_sat, pSatData.month_sat, pSatData.year_sat);
toaDates = [];
satToas = [];
satDistances = [];
floatDetails = pRfb.FLOAT;
%% Create table
results = struct();
%% Calculate SAT TOAs for every soundsource
fnames = fieldnames(pSoundsources);
for i = 1:length(fnames)
results.(fnames{i}) = table();
[date, toa] = artoa.toa.predictFromGps( ...
pRfb, ...
pSoundsources.(fnames{i}), ...
struct( ...
'temperature', pAppliedTemperature, ...
'pressure', pAppliedPressure, ...
'method', pSoundspeedMethod, ...
'soundSource', NaN ...
), ...
pLeapsecondsMatrix ...
);
results.(fnames{i}).satDate = date;
results.(fnames{i}).satToa = toa;
results.(fnames{i}).daysSinceStart = ...
date ...
- artoa.convert.dmy2rd( ...
pSoundsources.(fnames{i}).begemis(3), ...
pSoundsources.(fnames{i}).begemis(2), ...
pSoundsources.(fnames{i}).begemis(1) ...
);
tmpDistances = [];
% calculate distances
for oDistance = 1:length(toa)
if isnan(toa(oDistance)) | any(isnan(satPositions(oDistance, :)))
tmpDistances = [tmpDistances; NaN];
continue;
end
tmpDistances = [ ...
tmpDistances; ...
artoa.data.calculateGeodist( ...
satPositions(oDistance, :), ...
pSoundsources.(fnames{i}).position ...
) ...
];
end
results.(fnames{i}).satDistances = tmpDistances;
clear tmpDistances;
end
%% Construct matrices A and B
rowCount = length(satDates) * length(fnames);
aCore = zeros(rowCount, 2 * length(fnames));
b = zeros(rowCount, 1);
distances = zeros(rowCount, 1);
daysSinceFloatStart = NaN(rowCount, 1);
soundVelocity = NaN(rowCount, 1);
soundVelocity(:) = artoa.data.calculateSoundVelocity( ...
pAppliedTemperature, ...
pAppliedPressure, ...
pSoundspeedMethod ...
);
for i = 1:length(fnames)
rowIndices = ((i - 1) * length(satDates) + 1):i * length(satDates);
startColIndex = (2 * (i - 1)) + 1;
distances(rowIndices, 1) = results.(fnames{i}).satDistances;
aCore(rowIndices, startColIndex) = 1;
aCore(rowIndices, startColIndex + 1) = results.(fnames{i}).daysSinceStart;
b(rowIndices, 1) = results.(fnames{i}).satToa;
daysSinceFloatStart(rowIndices, 1) = ...
results.(fnames{i}).satDate ...
- artoa.convert.dmy2rd( ...
floatDetails.launchtime(3), ...
floatDetails.launchtime(2), ...
floatDetails.launchtime(1) ...
);
end
a = [ ...
distances, aCore, ones(size(daysSinceFloatStart)), daysSinceFloatStart ...
];
% remove all NaN from matrix
indicesToUse = all(~isnan(a), 2) & all(aCore >= 0, 2);
%x = a(indicesToUse, :) * flipud(b(indicesToUse, :));
x = pinv(a(indicesToUse, :)) * b(indicesToUse, :);
end